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Abstract 
 

Peatlands are carbon sinks and occupy approximately 13% of Canada’s terrestrial surface 

of which 0.02% have been harvested for horticultural peat. The extraction of peat from 

natural peatlands alters the hydrology which affects the growth and survival of Sphagnum 

the primary peat forming vegetation. Ericaceous shrubs do not require specific water 

content and soil water pressure conditions for their existence and in cutover peatlands 

they occupy more than 70% of the surface. Rainfall interception, transpiration and root 

water uptake and redistribution are processes that alter water availability at the soil 

surface. The high abundance of shrubs at cutover peatlands will influence the surface 

water balance and more importantly soil water availability and, inevitably determine the 

success of Sphagnum reestablishment at the site. This study seeks to understand the role 

that ericaceous shrubs play in the surface hydrological balance at a cutover site and how 

these changes impact Sphagnum development.  

 

Rainfall interception, transpiration, litter layer evaporation and soil water flux was 

investigated in the field and lab. Approximately 334 mm of rainfall was measured over 

the season. The shrub canopy and litter had a maximum storage capacity of 4 and 1.2 mm 

respectively and intercepted ca. 36.7% (120 mm) of rainfall over the season. The effects 

of rainfall intensity and duration were more important than gross rainfall in determining 

the amount of water intercepted by the canopy, while the thickness and mass of the litter 

layer largely determined the storage capacity. Evapotranspiration from shrubs averaged 

2.5 mm day-1 with a total of 211 mm over the season. Transpiration was 68% (142 mm) 

of total evapotranspiration losses, and represented the greatest water loss from the shrub 
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canopy. From these analyses only 22% (72 mm) of rainfall is available for other soil 

processes and moss development. The evaporation under a litter cover is lower than bare 

peat and in the field represents water storage of 17 mm over the season. Reduced water 

input by litter interception is offset by the increased water storage under the litter.  

 

Laboratory analyses of soil water flux under ericaceous shrubs show that water loss under 

the shrubs was greater than bare peat. Water use under the shrubs was highest between -

10 and -30 cm and was ca. 2 times greater than bare peat at the same levels. Volumetric 

water content (θ) decreased throughout the day and water use by shrubs during the day 

was twice that at night. The shrubs also maintained θ and soil water pressure (ψ) above 

the threshold values of 50% and -100 cm, respectively, needed for Sphagnum survival. 

 

Based on these analyses the shrubs will be beneficial to Sphagnum reestablishment and 

survival once the primary water losses have been compensated. I recommend raising the 

water table above -20 cm. In peatland restoration activities, at this level, water used 

between -10 and -30 cm can quickly be recharged and surface moisture maintained above 

threshold by capillary rise helping to offset water loss by interception and transpiration 

through capillary rise.  
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1.0 Introduction 

Peatlands comprise 50% of the world’s wetlands, and contribute greatly to biodiversity 

by regulating hydrological functions (Joosten and Clarke 2002). Peatlands are CO2 sinks, 

hosting one third of global soil carbon (Joosten and Clarke 2002), and it is known that 

hydrology plays an important role in the carbon budget (Moore et al. 1998). Canadian 

peatlands cover about 13% of the land surface (Tarnocai et al. 2005), of which 

approximately 0.02% has been used for horticultural peat (Keys 1992). Peat extraction 

techniques involve the removal of the acrotelm, altering the hydrological processes of the 

peatland (Price et al. 2003). Changes in hydrology after harvesting create unsuitable 

conditions for the regeneration of Sphagnum, the primary peat building vegetation. 

Although many peatlands have undergone natural vegetation succession, this has been 

limited to the reestablishment of naturally occurring vascular plants, with Sphagnum 

typically not regenerating well (Rochefort 2000). Removal of the upper layers by 

harvesting exposes the highly decomposed peat characterized by higher bulk densities 

and water retention capacities and lower specific yield and hydraulic conductivities than 

the upper layers (Price et al 2003). These properties occur primarily as a result the 

smaller pore size distribution of the decomposed peat. Drainage and subsequent lowering 

of the water table further disturbs the natural hydrological functions of the peatland. 

Subsidence, which causes shrinkage above and compression below the water table, 

further exacerbates the changes in soil physical properties and overall soil hydrology, as 

bulk density increases and hydraulic conductivity and specific yield decreases (Price 

2003; Kennedy and Price 2005). With reduced vertical and horizontal movement, deeper 

water table and higher water retention, harvested sites can no longer supply the necessary 
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water to meet evaporative demands. As a result, soil water pressure drops below -100 cm, 

which inhibits Sphagnum development (Price and Whitehead 2001).  

 

Ericaceous shrubs such as Chamaedaphne calyculata, Kalmia angustifolia, and Ledum 

groenlandicum are the dominant vascular plants found at cutover peatlands, representing 

more than 70% of the total surface cover in trenches and baulks of the manually block-

cut peatlands in Quebec (Girard et al. 2002; Poulin et al. 2005). Vascular plants alter 

hydrological processes by influencing the water balance and overall water availability in 

an ecosystem. They reduce the amount of precipitation that reaches the soil surface 

through interception by the leaves, stems and litter (Crockford and Richardson 2000), and 

may increase water loss through transpiration (Takagi and Tsuboya 1999). The water 

balance equation for bogs can be represented by; 

P = Et + R + ∆S + ε     Equation 1.1 
 
where P, is precipitation, Et, is evapotranspiration, R, runoff, ∆S, is change in storage and 

ε is the residual term. In cutover peatlands, evapotranspiration is the major source of 

water output in the post-snowmelt summer period, accounting for 92% of total water loss 

(Van Seters and Price 2001). The inclusion of interception in the general water balance 

equation is important as shrubs may intercept as much as 33% of precipitation (Martinez-

Meza and Whitford 1996). The water balance of cutover peatlands should include rainfall 

interception of the ericaceous shrubs, due to their abundance on these sites. The previous 

equation can be modified by including precipitation interception (I) and may be 

represented as 

P – I = Et + R + ∆S + ε  Equation 1.2 
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Plants alter the microclimate by reducing soil temperature and the amount of solar 

radiation reaching the soil surface. Though plants are directly responsible for water loss 

through transpiration, they have the potential to reduce evaporation (water loss) from the 

soil surface, as less heat and energy, necessary for evaporation, is available at the soil 

surface (Breshears et al 1998). The litter layer may play an important role by increasing 

soil water storage by reducing evaporation from the soil (Murphy and Lodge 2001). In 

cutover peatlands, with ericaceous shrubs covering 70 – 90% of the land surface, it is 

important that we understand how ericaceous shrubs affect the water balance and water 

availability, as  the availability and volume of soil water are key in the reestablishment 

and growth of Sphagnum (Price and Whitehead 2001; McNeil and Waddington 2003). 

The hypothesis for this thesis is: ericaceous shrubs reduce the amount of rainfall available 

in the soil at the end of the summer through interception and transpiration losses. 

Therefore, the specific objectives of this study are to 1. Quantify the rainfall interception 

by the shrub canopy; 2. Quantify the evapotranspiration rates of ericaceous shrubs versus 

bare peat; 3. Quantify the water storage capacity of leaf litter, including its rainfall 

interception capacity, as well as understand how it impedes water flow to the soil surface; 

and 4. Determine how ericaceous shrubs redistribute soil water during diurnal 

transpiration fluxes.  
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2.0 Literature Review 
 
2.1 Hydraulic properties of harvested peatland 
 
Natural bogs are characterised by a two layer soil structure (Ivanov 1981) composed of 

an upper layer, or acrotelm and a lower layer, or catotelm. The acrotelm consists of 

living, dead and partially decomposed mosses usually 0 – 50 cm thick, characterised by 

higher hydraulic conductivity (K) and larger pore sizes which decrease greatly with 

increasing depth. The catotelm consists of relatively decomposed peat, which has lower K 

as a result of smaller pore sizes (Ingram 1978). Peat extraction techniques involve the 

removal of the acrotelm, exposing the catotelm and altering the hydrological processes of 

the peatland (Price et al. 2003). Before harvesting, a network of drainage ditches is 

typically established, allowing water to be drained from the peatland, resulting in a lower 

water table. Surface subsidence (an inadvertent effect of drainage) occurs as a result of 

shrinkage and oxidation of peat above the water table and compression below the water 

table (Schothorst 1977). Bulk density in cutover peat is higher than at undisturbed sites 

and values of 0.11 g cm-3, 0.06 g cm-3, 0.13 g cm-3 versus 0.04 g cm-3, 0.05 g cm-3, 0.07 g 

cm-3 have been recorded for harvested and natural peatlands respectively (Price 1996; 

1997; Van Seters and Price 2002). Specific yield (Sy) is the ratio of the volume of water 

yielded by gravity drainage to the volume of the block of soil and is high in the acrotelm 

where there are many large pore spaces. Harvested peatlands have a low Sy due to their 

small pore size. Price (1996) found values ranging from 0.55 near the surface to about 

0.25 at 0.3 m in the undisturbed peat, while harvested peat has very low Sy, displaying 

little variability with depth, ranging between 0.04 and 0.06. Van Seters and Price (2002) 

demonstrated a Sy of 0.14 and 0.06 on undisturbed and bare peat respectively. The 
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decrease in Sy results in enhanced water table fluctuations due to loss in storativity (Van 

Seters and Price 2001; 2002). Price (1996) recorded water tables of –5 cm and –44 cm in 

the natural and cutover bog respectively, while Price (1997) recorded levels of –62 cm 

and –107 cm by late August in undisturbed and drained sites respectively. K of harvested 

peatlands is lower than undisturbed areas. Van Seters and Price (2002) observed values of 

4.1 x 10-5 and 1.3 x 10-5 cm s-1 at undisturbed and abandoned sites, respectively. Changes 

in the volume of peat has significant affects on K. Price (2003) noted that for a 1% 

volume change, a decrease in K by two orders of magnitude occurred. The low K values 

are a result of smaller pore sizes and higher bulk density, where due to subsidence and 

compression, the larger pores collapse, reducing connectivity, limiting flow (vertical and 

lateral) to smaller pores.  

 

Sphagnum does not have a vascular system and obtains water through capillary flow from 

below the peat surface. However, at harvested sites, the low upward movement of water 

is insufficient to replace the surface water loss through evapotranspiration (Price 2003). 

Although the small pore size distribution increases the water retention capacity of the 

soil, it makes the removal of water from these pores more difficult (Price 2003). As the 

growing season progresses, the water table levels lower and the peat surface becomes 

increasingly dry. When water table levels fall below -30 cm the soil water pressures 

drops below -100 cm. However, a pressure above -100 cm is needed to ensure the 

survival of Sphagnum, as water is drained from hyaline cells within the moss at pressures 

greater than this (Price and Whitehead 2001). It is these changes in the hydraulic 

properties of cutover peatlands that create harsh conditions, which make the 
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reestablishment of Sphagnum more difficult. Sphagnum alters its environment, reducing 

pH and nutrient availability and increasing the overall “wetness” (van Breeman 1995). 

These changes limit the establishment and abundance of vascular plants (van Breeman 

1995). Without the establishment of Sphagnum, vascular plants are able to grow without 

competition from the moss. In many cutover sites a natural seed bank for the ericaceous 

shrubs was unintentionally retained at the site during harvesting, acting as a source for 

future shrub populations. Unlike Sphagnum, the vascular system of shrubs can actively 

extract water from the soil and prevent water loss through closure of their stomata, which 

provides an advantage for their re-colonization compared to Sphagnum.  
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2.2 Ericaceous shrubs and hydrology 
 
2.2.1. Shrub anatomy and water movement 

Ericaceous shrubs can be considered as having two components: 1. above-ground 

biomass including leaves, stems, litter and 2. below-ground, including roots. Here we 

consider how each component may contribute to various hydrological processes 

occurring on in the peatland (Fig 1).  
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Figure 2. 1. Conceptual diagram of water balance as influenced by plant 
communities 
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2.2.2. Leaves and stems 
 
Leaves and stems of vascular plants have a role in hydrology through their effect on 

precipitation, microclimate and evapotranspiration. Precipitation, which is the primary 

input in bogs, can be partitioned into three processes (Crockford and Richardson 2000); 

a. Interception; is that which remains on the plant and is evaporated during and after 

rainfall. 

b. Stemflow; is that which flow to the ground via stems or trunks. 

c. Throughfall; is that which may not contact the canopy and which falls to the 

ground between the various components of the vegetation. 

The mass balance of partitioning of rainfall is generally expressed; 

 I = P - TF - SF      Equation 2. 
 
where I, is interception, P, is gross precipitation, TF, is throughfall and SF, is stemflow. 

Interception studies have been demonstrated in variety of ecosystems and plants, and it is 

generally affected by the plant species, intensity and duration of the precipitation, air 

temperature and humidity, wind speed and direction (Crockford and Richardson 2000) 

and the leaf area index and density of the plant community (Gómez et al. 2001). For three 

shrub species Návar and Bryan (1990) recorded total interception as 27% of precipitation, 

with throughfall and stemflow accounting for 69.7% and 3.1% of the total rainfall, 

respectively.  They noted that interception was more variable for small rainfall events, 

which is due to differences in climatic conditions before the start of the event. Martinez-

Meza and Whitford (1996) observed rainfall interception of 33% for three species of 

Chihuahuan shrubs. Throughfall was 58% of precipitation, while stemflow represented 

8.3% of rainfall. Domingo et al. (1998) recorded 40% interception with throughfall and 
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stemflow being 40 and 20 % of gross precipitation for A. cytisoides, while for R. 

sphaerocarpa 72% of gross rainfall was throughfall, 7% stemflow and 21% interception 

loss. They also showed a linear relationship with rainfall volume for both species. These 

studies indicate that throughfall was more important than stemflow which was typically 

<10%. Studies of shrub rainfall interception in peatlands are limited to only one study 

(Päivänen 1966). He measured interception for rainfall events of different magnitudes 

and recorded values of 46, 28, 13, 7% for 1mm, 5mm, 10mm and 15mm events, 

respectively. Shrubs have also demonstrated the ability to channel water along the stems 

via stemflow and root channels into the soil. Martinez-Meza and Whitford (1996) 

recorded root water channelization depths of up to 37 cm below the soil surface, with 

most of the dye indicating water movement found along the main roots of the shrubs. 

Root water channelization may benefit the plant by allowing it to store water deeper 

within the soil profile, which can be accessed during drier periods. If such a process 

occurs with ericaceous shrubs in cutover peatlands, it may be beneficial to the 

regeneration of Sphagnum as there would be more available water during dry cycles that 

the moss can use for its growth and maintenance. 

 

Plants alter the microclimate, including soil temperature, moisture and evaporation. Naot 

and Mahrer (1991) measured temperature profiles in a cotton field and recorded 

decreasing temperature from above the canopy (39°C) to the soil surface (29°C). 

Breshears et al (1997) recorded near ground solar radiation values under shrub canopies 

that were 40% less than that of open spaces within the canopy. However, their study also 

suggests that precipitation interception and not radiation (evapotranspiration effects) as 
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the major factor affecting soil moisture among canopy and inter-canopy patches. 

Breshears et al (1998) recorded lower soil temperatures (max 27.2°C) under plant 

canopies than inter-canopy patches (max 38.5°C) for April - September. The most 

noticeable difference occurred from 12:00 to 8:00 pm. The evaporation rate of soil under 

the canopy was lower than the inter-canopy patches, indicating that the higher 

temperatures in the patches were responsible for more water loss.  

 

The major water losses attributed to plants are as a result of transpiration losses.  Water 

movement in plants follow a water potential gradient from the soil to the atmosphere. 

Soil water enters the root system because of lower water potential (osmotic potential), 

and moves along the xylem up to the leaves where it is evaporated and released to the air 

through stomata. The rate of wetland evapotranspiration for a given energy supply is 

controlled by water table levels and vegetation cover (Lafleur and Roulet 1992). Shrubs 

may increase the evapotranspiration of peatlands. Romanov (1968) noted that 

evapotranspiration rates were reduced when the water table dropped 15 – 20 cm below 

the surface, which is the limit of the root structure of vascular plants, while Lafleur et al. 

(2005) similar trends as the water table dropped below the root system. Takagi and 

Tsuboya (1999) reported a higher evapotranspiration rate with an increase in vascular 

plant abundance in a peatland. Evapotranspiration from the vascular site was 4.6 mm day-

1 compared to 4.2 mm day-1 at the moss site. Heijmans et al. (2001) measured 

evapotranspiration rates for Sphagnum and vascular plants in field and laboratory 

experiments. They recorded lower evapotranspiration rates for vascular plants in the 

outdoor experiments, while evapotranspiration rates for laboratory experiments increased 
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with an increase in vascular plant biomass. They also recorded lower evapotranspiration 

rates for vascular plant monocultures (≈ 0.7 mm day-1), versus Sphagnum monocultures 

(≈ 2.0 mm day-1) and a vascular plant/ Sphagnum mix (1.9 mm day-1). This indicates that 

Sphagnum may be responsible for most of the evapotranspiration rates in bogs. They also 

suggest that lower evapotranspiration rates under the vascular plants are a result of 

reducing temperature and wind speed over the moss surface, however, with an increase in 

biomass these effects are negated by transpiration losses. Contrary to this, Price (1991) 

recorded low evapotranspiration rates of 1.7 mm day-1 over a Sphagnum dominated 

blanket bog, which is considered low for this type of wetland (Price personal 

communication 2008), and suggests that Sphagnum transpires at very low rates. In 

cutover peatlands little is known about the actual transpiration from shrubs, and this study 

quantifies values of ericaceous shrub transpiration. 

 

2.2.3. Mulches and Leaf Litter 
 
Mulches are an artificial barrier placed on the soil surface to ameliorate moisture and 

temperature of the soil, and in this respect are similar to naturally occurring leaf litter. 

Mulches are commonly used in agriculture, being important to the survival of drought-

intolerant crops, by reducing soil water loss. Mulches have been shown to increase soil 

water content and reduce evapotranspiration rates when applied to bare soils. Bristow 

(1988) recorded lower volumetric water content (θ) under bare soil (16.6%) than under a 

horizontal mulch (21.5%), while Cook et al. (2006) recorded water content being 0.10 m3 

m-3 more than the bare soil. Shangning and Unger (2001) recorded greater water 

accumulation rates under mulch cover than bare soil. They manipulated the potential 
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evapotranspiration (PET) rates and application rates of water used in the treatments and 

noted that under the highest PET rate and lowest water application that no water 

accumulated in bare soils, however, a 3-6% accumulation rate occurred in soils with 4.0 

Mg ha-1 of mulch. Shangning and Unger (2001) also suggest that the importance of 

mulches in water conservation may be more important for small precipitation events, as 

greater difference in water accumulation occurred under small water inputs. Evaporation 

under mulches is generally lower than for bare soils. Shangning and Unger (2001) 

recorded lower overall evaporation rates under mulched soil. However, they noted that 

though the initial evaporation rate of bare soil was higher than the mulch, the rate 

decreased over time, eventually becoming lower than the mulched soil, thus suggesting 

that mulch is important for short term (8 – 10 days) water conservation. In peatlands 

mulching is common practice in restoring harvested sites. A study on the effect of mulch 

on soil water in cutover peatlands (Price 1997), indicated that under mulch θ was 

maintained above 30% compared to bare surface, and that soil water tension remained 

above -100 cm, 97% of time. Price et al. (1998) recorded evaporation rates for mulch that 

were 2.6 mm day-1 versus 3.1 mm day-1 for bare cutover peat surface. It is important to 

understand processes that lead to increased water storage under mulches. The energy 

balance over bare soil is altered by the presence of mulch. Hares and Novak (1992 b) 

recorded higher Net radiation (Q*) values for bare (1.8 MJm-2) versus mulched (1.4 

MJm-2) soils, while  Price et al. (1998) recorded lower Q* (1.66 x 10-3 MJm-2  and 1.44 x 

10-3 MJm-2) and soil heat flux (2.16 x 10-4 MJm-2 and 2.88 x 10-6 MJm-2) values for bare 

and mulched peat surfaces respectively. Bristow (1988) studied the energy flux of bare 

and mulched soil under wet and dry conditions. He recorded higher initial Q* values 
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under bare soil (14.5 MJm-2) than mulched soil (12 MJm-2). However, this trend reversed 

with the onset of drying, which is due to changes in the proportion of shortwave radiation 

reflected by the bare soil. Under wet conditions the net radiation of both bare and 

mulched soil increased, with radiation being higher over the bare soil. Soil heat flux for 

both bare and mulched soil was ca. 90 Wm-2 under wet conditions. However, under dry 

conditions the heat flux for bare soil increased to ca. 150 Wm-2 while the mulched soil 

only increased to 100 Wm-2. Soil temperature under mulched soil is generally lower, 

during the day, and warmer at night than bare soil. Under mulched soil, temperature at 

the surface, 2.5 cm, and 10 cm under the surface was 14, 8 and 0.6 °C cooler than bare 

soil (Bristow 1988). However, under wet conditions the temperature of bare soil was 

similar to that under the mulch, but with drying, temperature of bare soil showed a 

greater diurnal increase than the mulched soil. Though mulches decrease water loss 

through the storage of soil water and reduction of evaporative losses, they cause 

interception which may decrease the volume of water reaching the soil surface. Cook et 

al. (2006) recorded a 10% loss in precipitation by mulch interception, while Price et al. 

(1998) demonstrated that straw mulch intercepted 44% of total precipitation. However, 

they suggest that the effects of interception are cancelled due to energy used to evaporate 

water from the mulch instead of the soil. 

 

Research on the role of leaf litter on water and energy balance of soils is quite limited 

when compared to mulches.  Litter can be placed into two categories (i) an upper layer of 

moderately undecomposed matter and (ii) a lower layer of mainly decomposed and 

fractured material (Sato et al. 2004). Leaf litter has the capacity to store water from 
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rainfall events. Sato et al. (2004) recorded maximum storage capacities of 1.6 mm and 

1.5 mm per unit litter mass (1 kg/m2) for C. japonica and L. edulis respectively, while 

Putuhena and Cordery (1996) measured an interception capacity of 2.8 mm and 1.7 mm 

for pine and eucalypt litter respectively. The maximum storage capacity of litter is 

directly proportional to the litter mass. Murphy and Lodge (2001) demonstrated that 

under dry conditions leaf litter had higher evaporation rate (2.1 mm day-1) than bare soil 

(1.1 mm day-1) when the soil was dry. However, when the soil was wet evaporation from 

litter (2.3 mm day-1) was less than bare soil (3.5 mm day-1). Their study also indicated 

that litter increased the surface albedo for both wet and dry conditions. Ginter et al. 

(1975) recorded lower evapotranspiration rates for a pine needle covered monolith than 

bare soil. The response of litter covered soil was slower as it absorbed light rain and 

retarded soil water evapotranspiration. The processes responsible for the increased 

storage and reduced evaporation may generally may the same as for mulches. To my 

knowledge, nothing is known about the litter dynamics, including depth and mass, and 

how it affects the water balance on abandoned harvested peatlands. This study would 

provide a first in depth look at how the litter layer alters the peatland hydrology (Fig 2) 
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Figure 2. 2 Conceptual model of the influence of the litter layer in the water balance 
 
 
2.2.4. Roots 
 
To meet daily transpiration requirements, plants must remove water from soil (upper and 

lower). Water moves from soil to roots along a water potential gradient. Water initially 

enters the root system from the soil along a potential (osmotic) gradient. As water is lost 

from the leaves during transpiration, a water potential deficit is created as it becomes 

increasingly negative. To meet these demands water enters the roots (low or more 

negative water potential) from the soil (high or more positive water potential) along a 

water potential gradient.  However, water absorption by the roots also lowers the soil 

water potential (Ψs). Hydraulic lift is the process of water movement from relatively 
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moist to dry soil layers using plant root systems as a conduit (Caldwell et al 1998). The 

main premise behind hydraulic lift is the reverse flow of water from the roots into the 

soil, which occurs once the xylem water potential in the roots is greater than that of the 

soil. This takes place once transpiration is reduced and the deeper roots maintain contact 

with moist soil. Hydraulic lift has been well demonstrated among a variety of trees and 

shrubs. Richards and Caldwell (1987) observed diurnal fluctuations in Ψs during the 

summer, while Dawson (1993) recorded similar diurnal Ψs fluctuations (0.66 – 0.82). 

These fluctuations ceased after heavy rains, which increased θ. Wan et al. (1993) 

conducted field studies of hydraulic lift on shallow rooted species and noticed a decrease 

in θ between 7:00 am and 8:00 pm indicating water uptake by the plants due to 

transpiration. They covered the shrubs between 9:00 am and 12:00 pm, preventing 

photosynthesis and transpiration, which resulted in an increase in θ by 7.7 – 14.7%. Topp 

et al (1996) demonstrated diurnal fluctuations in θ using Time Domain Reflectometry 

(TDR). They noted that the highest water content values occurred at night, and were 

>0.01 m3 m-3 higher than the maximum daily value. Hydraulic lift may also be important 

as a source of water for neighboring plants. Caldwell and Richards (1989) found 

deuterated-water from the deep roots of Artemisia in the stems of neighboring plants. In 

natural peatlands water movements have been described by Yazaki et al. (2006). They 

recorded relatively constant θ values of 0.15 and 0.20 m3 m-3 over the sampling season at 

0.05 and 0.15 m below the hummock surface, respectively. This occurs despite 

consistently lowering water table depths. This upward water movement and storage has 

been attributed to the capillary water-transport capacity of Sphagnum. However, this 

movement has never been linked to hydraulic lift caused by shrubs. In peatlands, little 
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work has been done on the distribution and depth of ericaceous shrubs roots. Moore et al. 

(2002) recorded a maximum shrub rooting depth of up to 60 and 40 cm for hummocks 

and hollows respectively. Coarse roots accounted for 86 and 70% of the biomass for 

hummocks and hollows respectively. Based on hydraulic lift theory, once the water table 

remains just above the lowest root depth, water may be distributed to the upper peat and 

moss layers when transpiration stops. In cutover sites the rooting depth has not to my 

knowledge been recorded and therefore is a gap to be filled by research.  

 
2.3 Restoration conditions and the effect of shrubs on restoration 
 
Restoration of Sphagnum on harvested sites is important as they are the primary peat 

forming vegetation. They generally cover less than 10% of harvested sites in harvested 

peatlands in Quebec (Rochefort 2000). To return some of the ecological and carbon sink 

functions to these sites, the hydrological conditions must be modified. Methods including 

amending microtopography (Price et al. 1998), mulching (Quinty and Rochefort 1997; 

Rochefort et al. 1997) and the use of companion species (Ferland and Rochefort 1997) 

have all been used as restoration techniques. Hydrologically, soil water pressure above -

100cm and θ above 50% are required for recolonisation and re-establishment of 

Sphagnum (Price and Whitehead 2001). McNeil and Waddington (2003) established that 

under wetter conditions in peat, 5.6-8.2% (θ), the gross ecosystem production and net 

ecosystem CO2 exchange of Sphagnum was greater than in drier sites, 1.7-2.4% (θ). This 

indicated the importance of wet conditions to the growth and productivity of Sphagnum. 

The typical approach towards active restoration of peatlands (bogs) in North America 

involves the use of Sphagnum diaspores (fragments). There are typically four steps 

involves in restoration (Rochefort et al. 2003). 1. Site preparation; involves 
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microtopography changes and providing a sufficient supply of water to maintain the 

necessary hydrological conditions needed for moss growth and establishment, 2. 

Collection of diaspores from natural peatlands, 3. Spreading of diaspores on the peat 

surface and 4. Protection of the diaspores and fertilization. A straw mulch is placed over 

the diaspores, which protects them and enhances growth by increasing water availability 

and reducing temperature. This approach is suitable for sites where active restoration is 

taking place. However, at sites such as the Cacouna bog, which was left to regenerate 

naturally, the establishment Sphagnum by spores may be more common. Sundberg and 

Rydin (2002) looked at the establishment of Sphagnum spores over bare peat and various 

litter surfaces. Their data proved that spores can be important in the reestablishment of 

Sphagnum in harvested sites, and under mulches, which provide a consistent phosphate 

supply while decomposing, which can enhance growth of spores. As discussed earlier, 

the litter layer may reduce water loss from the peat surface of harvested bogs by lowering 

evaporation rates. However, the litter layer may act as a barrier, cutting off or reducing 

capillary flow to the peat surface. In harvested sites where a litter layer has been 

established before Sphagnum, the spread of air borne spores and fragments at the 

peatland may be limited to the surface of the litter (Price and Whitehead 2004). With the 

litter acting as barrier to capillary rise, recolonisation by Sphagnum may be impossible 

except for areas that are frequently inundated with water (Price and Whitehead 2004). 

Shrubs have successfully been used as nurse plants, increasing the θ and survival of tree 

seedlings when compared to bare soil (Castro et al 2002). In harvested peatlands shrubs 

have shown potential as nurse plants, increasing the percent cover of growing adjacent 

Sphagnum diaspores (Ferland and Rochefort 1997). In harvested peatlands, the shading 
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of moss by shrubs allows sufficient energy the reach the surface for proper growth of the 

Sphagnum and, coupled with a cooling effect, enhances the growth of the moss (McNeil 

and Waddington 2003).  
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3.0 Site description 

The Cacouna peatland (47°53' N, 69°27' W) is located approximately 10 km north-east of 

Rivière-du-Loup, Québec. It is a domed bog, covering an area of 172 ha at an average 

elevation of 83 m above sea level (Girard et al. 2002). Mean annual precipitation (1971-

2000) at a weather station in nearby St. Arsène was 962.9 mm, 28% which fell as snow. 

Mean annual temperature (1971-2000) was 3.2°C, with mean maximum temperatures in 

January and July of -8.5 and 22.9°C respectively (Environment Canada 2007). The 

peatland has been disturbed several times in the past 200 years including the construction 

of roads, development of agricultural fields and the building of a railway in the 1800s. 

The railway was built over a natural groundwater divide, greatly compressing the peat 

creating a flow divide that separated the bogs into two hydrologically distinguishable 

halves. Harvesting of the bog began in 1942 with the installation of primary and 

secondary drainage ditches, and continued until 1975 using traditional block-cut methods. 

This method involved cutting the peat by hand from trenches approximately 10 m wide 

and ca. 200 m long. Peat blocks were piled on uncut mounds or baulks (ridges 

approximately 1 m high and 6 m wide) separating adjacent trenches, while the remaining 

vegetation (skag) was placed in the centre of the trench. Over time the skag settled and 

decomposed, becoming rounded, and acted as a seedbank for vegetation reestablishment. 

Following the introduction of vacuum machines the block cut method was quickly 

abandoned and the northwestern half (16 ha) of the peatland was harvested using vacuum 

machines between 1983 and 1989 (Girard et al. 2002). The site was completely 

abandoned in 1989. The Cacouna bog currently consists of 511 trenches, 445 baulks and 

16 vacuum fields (Girard et al. 2002). In October of 2006, the primary drainage ditches 
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were blocked while of forest was cut, in an effort to rewet the 

bog.
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Figure 3. 1. Aerial view of the Cacouna peatland showing the study areas (red 
boxes) 

 

Following abandonment, the Cacouna bog has undergone a natural vegetation succession. 

Plants typical of peatlands in that region have recolonized most of the bare peat surface. 

Ericaceous shrubs, such as Chamaedaphne calyculata, Kalmia angustifolia, and Ledum 
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groenlandicum are the dominant plant species covering ca. 79-90% of the surface (Girard 

et al. 2002). Trees including, tamarack (Larix laricina), black spruce (Picea mariana), 

jack pine (Pinus banksiana), grey birch (Betula populifolia) and white birch (Betula 

papyrifera) are especially dominant along the bog periphery and the earliest abandoned 

areas. The distribution of Sphagnum moss is sparse (<10%) and generally limited to wet 

areas of trenches and topographic depressions in the bog (Girard et al. 2002). 

 

Throughfall collectors, lysimeters and micrometeorological (continuously recording) 

equipment were set up along the study trench and 4H areas (Fig 3.2). These areas were 

selected as they have previously been used to collect meteorological data and conduct 

research in earlier years (Van Seters; Whitehead 1999) and from May to August 2005 – 

2006. The study trench area is characterised by two trenches bordered by three baulks 

and the surface is covered primarily by ericaceous shrubs. The study trench housed 7 

throughfall collectors and 21 lysimeters placed at randomly selected locations along the 

trenches and baulks. The 4H area is characterised by a relatively flat topography since the 

baulks were harvested prior to abandonment, and covered primarily by Sphagnum and a 

low density layer of ericaceous shrubs. Nine throughfall collectors were randomly set up 

and were used to understand the spatial differences in interception across the site.  

 

In October, 2007, six monoliths (706 cm2 x 32 cm) were collected from the study trench 

area. Two shrub- and one bare peat- samples (no shrubs present) were obtained from 

randomly selected locations along a baulk (raised area) and then repeated for a trench 
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(more deeply cut area between baulks). These monoliths were used in the laboratory to 

run a series of experiments testing the water uptake by shrubs (see Chapter 5). 
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Figure 3. 2. Instrument locations along the main study areas 
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4.0 Interception and Evapotranspiration: The effects of 

Ericaceous Shrubs on the surface water availability of a 

Cutover Peatland 

 

4.1 Introduction 

Approximately 13% of the Canadian land surface is covered by peatlands (Tarnocai et al. 

2005), of which 0.02% has been used for horticultural peat extraction (Keys 1992). Peat 

extraction techniques involve the removal of the acrotelm, altering the hydrological 

conditions of the peatland (Price et al. 2003). Changes in hydrology after harvesting, 

creates unsuitable conditions for the regeneration of Sphagnum, the primary peat building 

vegetation, while ericaceous shrubs have become the dominant plants found at cutover 

peatlands, representing more than 70% of the total surface cover of the manually block-

cut peatlands in Québec (Girard et al. 2002; Poulin et al. 2005). The high abundance of 

shrubs produce a litter layer found below the canopy at the surface of cutover peatlands. 

The canopy and litter layer may directly influence the water balance through interception 

(I) (Crockford and Richardson 2000; Sato et al. 2004), transpiration (T) (Dingman 2002) 

and changes in soil evaporation (E) (Murphy and Lodge, 2001). Currently the role 

ericaceous shrubs and their litter play in the water balance of cutover peatlands is not 

understood. More importantly the shrubs may influence the hydrologic conditions 

important for the regeneration of Sphagnum. This study aims to understand how 

ericaceous plants affect the moisture dynamics at the soil surface of cutover peatlands.  
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Interception by vegetation canopies has been well described for a number of trees and 

forested ecosystems (Crockford and Richardson 2000) but is limited for smaller plants 

such as shrubs and grasses. I has been well documented for desert shrub species. Návar 

and Bryan (1990) and Martinez-Meza and Whitford (1996) observed I of 27 and 33% of 

rainfall for three species of desert shrub, while Domingo et al. (1998) recorded 40% I 

losses for a single species. These studies indicate that throughfall was more important 

than stemflow, which was < 10% of gross rainfall. I by shrubs in peatlands is limited to 

one study by Päivänen (1966), who found I was 46, 28, 13 and 7% for rainfall events of 

1mm, 5mm, 10mm and 15mm, respectively. Litter has also been shown to intercept 

between 0.3 and 6.7 % of incoming rain (Sato et al. 2004) and has a water storage 

capacity between 1.5 and 2.8 mm kg-1 (Putuhena and Cordery 1996; Tobón-Marin et al. 

2000; Sato et al. 2004).  

 

Evapotranspiration (Et) is the major water loss observed in natural (Price and Maloney 

1994) and cutover peatlands (Van Seters and Price 2001). In natural peatlands 

considerable evaporative losses occur from the Sphagnum surface. However, shrubs may 

increase peatland Et. Romanov (1968) and Lafleur et al. (2005) noted that Et decreased 

when the water table dropped 15 – 20 cm below the surface, which is the limit of the 

shrub root structure (Romanov 1968). Takagi and Tsuboya (1999) reported an increase in 

Et with increasing vascular plant abundance in a peatland. The enhanced Et by shrubs 

occur as direct loss through T, which in ericaceae is more than 50% of Et (Miranda et al. 

1984). The moisture dynamics of mulch, which is analogous to litter, have been studied 

in more detail than natural litter layers. Differences in net radiation (Bristow 1988; Price 
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et al. 1998) and temperature (Bristow 1988) reduce E from soil under a mulch cover 

(Shangning and Unger 2001; Price et al. 1998), resulting in higher soil water content 

(Bristow 1988; Price 1997; Cook et al. 2006). As with mulches, litter generally has 

higher surface albedo than soil under both wet and dry conditions which reduces loss 

(Murphy and Lodge, 2001). Though the litter layer reduces the amount of water reaching 

the soil surface, the effects of interception are offset because energy used to evaporate 

litter-water is unavailable to evaporate water from the soil (Price et al. 1998). 

 

The abundant distribution of ericaceae at cutover peatlands may significantly impact the 

water balance at the site through water losses incurred by I and T. Alteration to water 

storage at the peat surface influences Sphagnum development and survival. This study 

seeks to understand how ericaceous shrub canopy and litter layer affect water availability 

at the peat surface of a cutover peatland. Specifically I intend to: 1. understand and 

quantify the rainfall interception of the shrub canopy and litter layer; 2. quantify 

transpiration losses from the shrubs; 3. quantify the effects of the litter layer on soil 

evaporation rates: and 4. use the interception and transpiration values to estimate the 

amount of water available in the soil. 

 

4.2 Study Area 

The Cacouna peatland (47°53' N, 69°27' W) is located approximately 10 km north-east of 

Rivière-du-Loup, Québec. It is a domed bog, covering an area of 172 ha at an average 

elevation of 83m (Girard et al. 2002). Mean annual precipitation (1971-2000) at a 

weather station in nearby St. Arsène was 962.9 mm, 28% of which fell as snow. Mean 
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annual temperature (1971 – 2000) was 3.2°C, with mean maximum temperatures in 

January and July of -8.5 and 22.9°C, respectively (Environment Canada 2007). 

Harvesting of the bog began in 1942 with the installation of primary and secondary 

drainage ditches, and continued until 1975 using traditional block-cut methods. This 

method involved cutting the peat by hand from trenches approximately 10 m wide and ca. 

200 m long. The Cacouna bog currently consists of 511 trenches, 445 baulks (ridges 

approximately 1 m high and 6 m wide) and 16 vacuum–harvested fields (Girard et al. 

2002). In October of 2006, the primary drainage ditches were blocked in an effort to 

rewet the site.  

 

Following abandonment, the Cacouna bog has undergone natural vegetation succession. 

Plants typical of peatlands in that region have recolonized most of the bare peat surface. 

Ericaceous shrubs, such as Chamaedaphne calyculata, Kalmia angustifolia, and Ledum 

groenlandicum are the dominant plant species covering ca. 79-90% of the surface (Girard 

et al. 2002). Trees including, tamarack (Larix laricina), black spruce (Picea mariana), 

jack pine (Pinus banksiana), grey birch (Betula populifolia) and white birch (Betula 

papyrifera) are especially dominant along the bog periphery and the earliest abandoned 

areas. The distribution of Sphagnum moss is sparse (<10%) and generally limited to wet 

areas of trenches and topographic depressions in the bog (Girard et al. 2002).  

 

4.3 Methodology 

4.3.1 Field methods 

4.3.2 Micrometeorological measurements 
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Data was collected during the main growing period from June to 22 August 2007, at the 

study trench and 4H sites (Fig 3.1; 3.2). A meteorological station was set up along the 

main study trench and monitored continuously using a Campbell Scientific Inc™ data 

logger. Precipitation was measured using two tipping bucket and manual rain gauges 

situated approximately 1m above the peat surface (Fig 3.2). The manual gauges were 

located within 3 metres of the tipping bucket gauge. Net radiation (Q*) was measured 

using a net radiometer installed ca. 1 m above a relatively homogenous Sphagnum-

ericaceae surface. Soil heat flux was measured with a soil heat flux plate inserted 1cm 

under the Sphagnum surface. Ideally net radiation would have been measured over 

ericaceae, however, the equipment could not be moved as it was currently being used in a 

three year study of the site. Van Seters (1999) recorded a less than 1% difference in Q* 

between Sphagnum and ericaceae surfaces at this site. Here we assume a similar 

relationship and use Q* values from Sphagnum to calculate shrub Et.  

 

4.3.3 Rainfall interception 

I, measured as the difference between gross rainfall (P) and throughfall (TF), was 

measured under ericaceous shrub after the rainfall event. Twenty-three TF collectors 

were used over the study period. The collectors were placed under the shrubs, as close to 

the ground surface as possible, at an angle of ca. 10 degrees from the surface. Twelve 100 

x 3.8 cm (380 cm2) troughs were used to represent TF under mixed shrubs, while six 44.5 

x 3.8 cm (169.5 cm2) troughs were used to measure TF under specific shrub species. Six 

40 x 2.3 cm (92 cm2) troughs were also used under shrubs growing on Sphagnum 

hummocks. This smaller size was chosen as the gaps between the stems were much 
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narrower and the larger collectors caused more spacing between stems increasing the size 

and number of gaps in the canopy. The volume of water obtained in the collectors after a 

rainfall event was measured and expressed as depth (mm). This value is the TF. I is the 

difference P and TF. 

 

4.3.4 Ericaceous shrub canopy and litter layer evapotranspiration and transpiration 

The Priestley and Taylor (1972) combination method was used to estimate daily 

evapotranspiration by applying the alpha parameter (α), the ratio of actual (Eta) and 

equilibrium (Eteq) evapotranspiration (mm d-1), to the formula; 

Eta = α(s/(s+q))((Q*-QG)/Lρ)    Equation 1. 

where L is the latent heat of vaporization (J kg-1), ρ is the density of water (kg m-3), s is 

the slope of the saturation vapour pressure vs. temperature curve (Pa°C-1), q is the 

psychrometric constant (0.0662 KPa°C-1 at 20°C), Q* is the net radiation flux (Wm-2), 

and QG is the ground heat flux (Wm-2). The determination of α requires an estimation of 

actual evaporation from the desired surface type, and was estimated using plastic 

lysimeters set into various surfaces as described below: Et for ericaceous shrubs were 

estimated using six 60 x 40 x 22 deep cm lysimeters. A large plastic bladder was filled 

with water and placed at the bottom of the containers. A clear plastic tube, extending to 

the outside of the container, was connected to the water outflow of the bag and a 

measuring tape attached along the length of the tube. The inside of the container was 

sealed with plastic sheeting, which protected the bladder and isolated it from atmospheric 

additions or abstractions of water. A 15 cm peat monolith was placed inside the 

lysimeter, which was then returned to the pit from where the monolith was extracted. The 
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water level in the tube was monitored daily, and represented a change mass of the sample 

equivalent to the depth of water lost by Et. At the end of the season the lysimeters were 

calibrated by adding known volumes of water and recording the changes in water levels 

within the tube. Direct evaporation (E) for natural ericaceous litter cover and bare peat 

were measured using 18 cm x 18 cm x 15 cm high plastic lysimeters, six each with litter 

and three with bare peat. The litter samples were collected along the length of the baulk 

and trench. A 15 cm deep monolith was cut to fit, and then placed in the lysimeters. 

Vegetation was clipped at the base and removed from the monoliths. The samples were 

weighed every 2 – 3 days and the mass change recorded. After weighing the samples 

were inspected using a HydroSense® water sensor to determine if water should be added 

or removed to maintain moisture content similar to the surrounding peat. Transpiration 

(T) was estimated as Et from the shrubs minus E from the litter. To understand the 

shading effect provided by the shrubs, we removed living shrubs from four bladder 

lysimeters. For two lysimeters the removed vegetation was sprayed with green paint and 

reattached in their previous orientation. E of the reattached lysimeters was compared to 

the bare peat. 

 

4.3.5 Litter thickness and mass distribution 

Leaf litter depth was measured at 58 randomly selected locations with a 50 cm x 50 cm 

quadrat between 8 – 18 August, 2007. The leaf litter depth was measured at four 

locations within the quadrat by placing a measuring tape within the litter until it reached 

the peat surface. The litter was subsequently removed and taken by to the laboratory 

where small twigs and decomposed litter was separated using a 2.80 mm screen. The 
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samples were weighed to determine their mass per unit area. The relative humidity (RH) 

was measured at 3 points inside the quadrat at the surface and within the litter layer using 

a using a Vaisla HMI41 (micro-probe) Humidity Indicator. 

 

4.3.6 Laboratory methods and analysis 

4.3.7 Maximum water storage capacity (MSC) of the litter layer 

The maximum water storage capacity (MSC) represents the potential maximum amount 

of water that can be absorbed and stored within the leaf itself (i.e. excluding the matrix 

between leaves). Litter density of 0.05, 0.1, 0.2 and 0.5 kg m-2 were used. For each litter 

density air dried litter was added and spread evenly across a 25 x 25 cm sample rack with 

a 5 mm screen, with nine replicates for each density. The samples were soaked in water 

for 24 h and removed and allowed to drain for 30 min, removing gravitational water held 

within the litter. After 30 min the sample was reweighed and the maximum water storage 

capacity calculated as the wet mass minus the air dried mass. 

 

4.3.8 Litter interception storage capacity 

Interception storage capacity (I) of the litter layer was measured using a rainfall 

simulator. According to Putuhena and Cordery (1996) and Sato et al. (2004) I can be 

separated into two categories; 1. Cmax, the maximum interception storage capacity and 2. 

Cmin the minimum interception capacity. Cmax is the amount of water detained within the 

litter layer when interception stops increasing during rainfall and includes gravitational 

water, while Cmin is the amount of water retained when free drainage stops after rain and 

does not include gravitational water. Cmin is subject to partial rewetting depending on the 
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litter matrix structure and the nature of the wetting event and differs from MSC where all 

pore spaces and leaf material is saturated by complete immersion. Hydrologically, Cmin is 

more important as water is readily drained within 30 min after rainfall ceases, and 

represents the actual water that is held within litter Putuhena and Cordery (1996). 

Rainfall was produced by irrigating with a rainfall simulator in which the intensity (5, 10 

and 25 mm h-1) was adjusted by manipulating the water flow and the distance of the 

sampling tray from the water source. Interception was measured for litter thickness and 

litter mass of 0.5, 1 and 2 cm and 0.5, 0.8 and 1.4 kg m-2
,
 respectively. The litter was 

placed in a 25 x 25 cm tray with 5 mm mesh and placed over a tipping bucket rain gauge, 

which recorded water draining through the litter at 2 min intervals over a 90 min 

simulated event. The simulated rainfall was stopped after 90 min and the sample was 

allowed to drain over the gauge for 30 min. Field litter I was estimated using TF and its 

respective intensity (Equation 2). 

Litter I = Cmin (%) x TF (mm)    Equation 2. 

 

4.3.9 Litter layer evaporation rates 

Laboratory experiments were performed in 7 cm diameter x 16 cm deep containers.  

Milled Sphagnum peat (Premier® Sphagnum Peat Moss) was used to ensure sample 

homogeneity. The peat was initially saturated by inundating and mixing the peat to 

remove air, and then packed into columns with a dry bulk density of approximately 0.4 g 

cm3. Four replicates of bare-peat were used, filling the 16 cm high container. Similarly, 

four replicates of 15, 14 and 12 cm columns of peat were packed into the remaining 

columns with 1, 2 and 4 cm depth of litter, respectively, to fill the 16 cm containers. The 
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litter densities were 0.1, 0.2 and 0.3 kg m-2, respectively. A sample container filled with 

water was used to estimate potential evaporation. Samples were placed 20 cm below a 

grow light and were weighed every 1-2 days to record water loss and calculate E. Air 

temperature and RH was kept at approximately 25 ˚C and 36%, respectively, and 

recorded above the surface of the samples every two days using a Vaisla HMI41 

Humidity Indicator. Volumetric water content (θ) of the lysimeters was determined 

gravimetrically. 

 

4.3.10 Statistical analysis 

Student`s t-test and analysis of variance (ANOVA), at P = 0.05, were used to determine if 

significant differences occurred for the rainfall interception and 

evapotranspiration/evaporation data. Regression values and equations for the curves were 

determined using Microsoft®EXCEL. 

 

4.4 Results 

A total of 334 mm of rain fell between 25 May – 22 August, 2007. Rainfall in June and 

July (228.2 mm)was 21% higher than the 30 year average (1971 – 2000) of 179.1 mm for 

the same months (Environment Canada, 2007) (Table 4.1).  The period between 7 and 16 

June (Fig 4.1a) represented the longest period without rainfall over the season (10 days). 

Precipitation events < 3 mm occurred 9 times over the season, while events > 30 mm 

occurred 4 times (Fig 4.1b). Rainfall events < 20 mm accounted for ca. 45% of the gross 

rainfall while events > 20 mm accounted for 55%. Rainfall intensity varied between 2 

and 25 mm h-1. Rainfall between 6 and 10 mm h-1 occurred most frequently with 18 
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events, while rainfall between 21 and 25 mm h-1 occurred only 3 times over the season 

(Fig 4.1c). The difference between adjacent tipping bucket and manual rain gauges was 

less than 10%, while spatial differences between tipping buckets gauges was less than 

20%. The average daily temperature for June and July were 0.2 and 0.3°C higher than the 

30 year mean, respectively, while the August average was 0.6°C lower than the 30 year 

mean (Table 4.1). Average temperature increased from May (14.2°C), peaking in July 

(18.1°C) and decreased in August (15.9°C). 
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Figure 4. 1. a. Average daily rainfall (mm), b. rainfall size frequency and c. rainfall 
intensity frequency (mm h-1) for 2007 season. In b and c the x-axis shows the upper 
boundary of the class interval. 
 
Q* averaged 204 Wm-2 over the season, generally increasing from 15 May to 25 July 

then decreasing thereafter. Q* was consistently higher in July than the other months, 

averaging 263 Wm-2 compared to 155, 165 and 217 Wm-2 for May, June and August 

respectively. 

 

Table 4. 1. Average temperature (°C) and total precipitation (mm) for 2007 season 
and 30 year running average 

Month Temperature 
(°C) 
2007 season 

Temperature 
(°C) 
30 yr average 

Precipitation 
(mm) 2007 
season 

Precipitation 
(mm) 30 yr 
average 

June 15.1 14.9 92.4 87.1 
July 18.1 17.8 135.8 92 
Total   228.2 179.1 
 

Ericaceous shrub throughfall and interception 
 
The amount of rainfall intercepted by the shrub canopy increased with increasing rainfall 

volume, ranging from 0.7 – 15 mm. TF increased as the depth of rainfall increased and 

ranged from 0.3 to 38 mm (Fig 4.2 a). Using TF data, the interception capacity was ≈ 4 
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mm estimated as the difference between solid and dashed (envelope) curves (Fig 4.2 a).  

Cumulatively, shrubs intercepted 102 mm of rainfall for 24 rainfall events over the 2007 

season, which represents 33.7% of the total rainfall. Therefore 200 mm or 66.3% of 

rainfall reached the peat surface as TF (Fig 4.2 b). In terms of understanding how rainfall 

characteristics affect I, it is important to look at I in terms of percentage of rainfall 

intercepted. The percent rainfall intercepted decreased as gross rainfall increased and 

ranged from 26 – 85% (Fig 4.3). Depth of rainfall per event does not fully explain the 

percentage of rainfall intercepted. For events of similar rainfall volumes (2 – 20 mm) I 

ranged from 30 – 78 %, which indicates that other external factors have a role in 

determining the interception capacity of a vegetation canopy (Fig 4.3). 
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Figure 4. 3. Overall percent interception versus rainfall (mm) for all throughfall 
collectors  
 
For the previously mentioned rainfall events (2 – 20 mm) the effect of rainfall intensity 

on I was examined. The percentage of rainfall intercepted for these events was higher for 

lower intensity events and decreased as rainfall intensity increased (Fig 4.4).  
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Figure 4. 4. Interception (%) versus rainfall intensity for rainfall events between 2-
20 mm 
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Figure 4. 5. Effect of rainfall intensity (mm h-1) and duration (h) on percent 
interception (%) 

I (%) 

 
The combined effects of rainfall intensity and duration on I were examined (Fig 4.5). I 

for the extreme low intensity, low duration event (circle) was the highest (86%). The 

lower range of I featured events of higher intensity and long duration (dashed line), 

representing 30% of I. Long duration, low intensity events (dotted line) produced 

medium I rates representing 40%, while medium duration, lower intensity events (solid 

line) produced the highest I (50%). 

 
I differed significantly (P < 0.05) under similar vegetation cover between the 92 cm2 and 

the 380 and 169 cm2 collectors with the former intercepting more than the latter (Table 

4.2).  

Table 4. 2. Differences in the percentage of rainfall intercepted for various 
throughfall collectors. (Values in parenthesis are standard errors) 

Collector surface area (cm2) Percentage intercepted (%) Throughfall (mm) 
380 49.1 170 (1.8) 
169.5 42.4 192.4 (0.5) 
92 56.7 144.6 (0.8) 
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Ericaceous shrub evapotranspiration 
 
Daily Et of ericaceous shrub samples ranged from 0.5 to 6.9 mm day-1 (Fig 4.6 a), and 

averaged 2.5 ± 1.6 mm day-1 or 211 mm over the season, representing 63% of 

precipitation over the season. Et from trenches (2.3 mm day-1) was less (P > 0.05) than 

baulks (2.8 mm day-1), with the former being 82% that of the latter. The Priestley and 

Taylor (1972) coefficient, α, recorded over the season for the shrubs was averaged at 

0.57.  
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Figure 4. 6. a. Average daily evapotranspiration (mm day -1) of ericaceous shrubs 
from trenches and baulks and b. Actual versus equilibrium evapotranspiration (mm 
day -1) for ericaceous shrubs (each point represents an average from all sites) from 
June – August 2007 
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The shading experiments indicate that E from clipped (0.9±0.4 mm day-1) was lower than 

clipped and reattached shrub lysimeters (1±0.6 mm day-1). The differences are not 

significant (P > 0.05) and suggest that shrubs do not prevent substantial water loss by 

reducing soil E through shading.  

 

E for baulk ericaceous litter ranged from 0.1 to 1.3 mm day-1 and averaged 0.6 mm day-1, 

while E for trench ericaceous litter ranged from 0.2 to 2.5 mm day-1 and averaged 0.9 mm 

day-1, respectively (Fig 4.7). The litter samples averaged 0.8 mm day-1 or 67 mm over the 

season with no significant differences (P > 0.05) between baulks and trenches. E from the 

litter layer in the field was significantly lower (0.9 ± 0.5 mm day-1) than the bare peat (1.1 

± 0.5 mm day-1), over the season totalling 75 and 92 mm of water, respectively (P < 

0.05). 
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Figure 4. 7. Daily evapotranspiration (mm day-1) for natural litter in trench and 
baulk from samples from June to August 2007 
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Ericaceous shrub transpiration 
 
To further asses the role that ericaceous shrubs play in the overall water availability at the 

Cacouna bog, an estimation of T is needed. Based on Et and E shrubs transpired ca. 1.7 

mm day-1 (142 mm over season) or 42% of precipitation. T accounted for 68% of the total 

evapotranspiration losses over non-Sphagnum surfaces (Fig 4.8). 
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Figure 4. 8. Cumulative water loss by shrub and litter evapotranspiration, litter 
evaporation and shrub transpiration from June to August 2007.  
 
Litter thickness and mass distribution 

The mean litter thickness measured in the field was 2.5 ± 0.9 cm with maximum and 

minimum values of 5 and 0.1 cm respectively. Baulk litter (2 cm) was significantly 

thicker (P < 0.05) than trenches (1.2 cm) (Fig 4.9 a). The average litter mass was 0.2 ± 

0.04 kg m-2 with maximum and minimum values of 0.5 and 0.01 kg m2 respectively. As 

with litter thickness the litter mass of baulks (0.3 kg m-2) was significantly higher (P < 

0.05) than trenches (0.1 kg m-2) (Fig 4.9 b).  
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Figure 4. 9. Box plot of a. litter thickness and b. litter mass for baulks and trenches 
 

Maximum storage and Interception storage capacity 

The MSC of the litter was 2 mm kg-1 and ranged between 0.1 – 1 mm for 0.05 to 0.5 kg 

m-2 of litter. MSC increased as litter thickness increased (R2 = 0.984). 

 

The 0.5 kg m-2 litter layer (most representative of field conditions) intercepted an average 

of 3% or 0.2 – 1.2 mm of simulated rainfall. Using seasonal TF of 196 mm observed 

under the shrubs, I by field litter was ≈ 7 mm over the season. The amount of water 

retained in the litter increased as the depth/mass increased (Fig 4.10, Table 4.3). For a 

given litter mass/thickness the amount of rainfall detained increases as the rainfall 

intensity increases (Fig 4.11). However, the proportion of water retained decreases as 

intensity increases, though only by 1%. The amount of rainfall intercepted increased 

rapidly over the first 40 min and became consistent around 90 min. When rainfall ceased 

0.1 – 0.3 mm of water was drained from the litter. 
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Figure 4. 10. Rainfall interception for 0.5, 1 and 2 cm thick litter layers for a. 5 mm 
h-1 b. 10 mm h-1 and c. 20 mm h-1. Black and white circles indicate Cmax and Cmin 
respectively 
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events. Black and white circles indicate Cmax and Cmin respectively 
 

Table 4. 3. Minimum interception storage capacity (Cmin) with litter mass and litter 
depth 
Litter mass (kg 
m-2) 

Litter depth (cm) Rainfall intensity (mm h-1) 
5 10 20 

0.5 0.5 
 

0.2 0.6 1.2 

0.8 1 
 

0.5 
 

1.2 1.4 

1.4 2 
 

0.7 1.6 2.6 

 

Laboratory litter layer evaporation rates 

In the laboratory experiment E from litter-covered peat was also lower than bare peat 

over the first 33 days (Fig 4.12 a), but bare-peat E started declining sharply around day 

25, eventually becoming lower than litter E by day 34. Between days 1 and 22 E from 

bare peat surface (3 mm day-1) was statistically higher (P < 0.05) than litter covered 

surfaces (0.8, 0.6, 0.3 mm day-1 for 1, 2 and 4 cm litter depths, respectively). Cumulative 

10 mm h-1

5 mm h-1

I (
m

m
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water loss over the duration of the experiment from bare peat, 1, 2 and 4 cm litter depths 

corresponded to 91, 35, 27 and 15 mm of water respectively (Fig 4.13).  
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Figure 4. 12. Evaporation (mm day-1) and b. Relative humidity (%) from bare peat, 
1 cm, 2cm and 4cm thick litter and water over the 47 day sample period 
 
 
E from the litter-covered surfaces remained relatively consistent over the experiment (Fig 

4.12 a), with evaporation from 1cm litter depth higher than from 2 and 4 cm litter layers. 

There were significant (P < 0.05) differences in E between the three samples (Fig 4.13 a). 

RH at the surface of the samples showed similar trends as E (Fig 4.13 b). RH was 

significantly higher over bare peat and began to decrease (day 25), becoming lower than 
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the litter samples (Fig 4.13 b). From the field quadrats RH at the litter surface (65%) was 

lower than within the litter (94%) (Appendix A4). 
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Figure 4. 13. Cumulative water loss from bare peat, 1 cm, 2 cm and 4 cm deep litter 
samples 
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θ of the bare peat decreased rapidly over the first four days and by day six was 

significantly lower (P < 0.05) than that of the litter covered samples. The differences in θ 

under the litter samples over the study period were not statistically significant (P > 0.05) 

and showed a linear relationship with litter thickness (R2 = 0.833). 

 

Water balance 

The shrubs intercepted 120 mm from the canopy and litter layer, and transpired 

approximately 142 mm from June to August. The sum of these, which represents the 

direct water loss from the shrub canopy is 262 mm or 78% of rainfall over the season. 

Ericaceous shrubs only make 72 mm or 22% of the total rainfall available for other soil 

processes over the summer months. Over the summer season we estimate evaporation is 

reduced by 17 mm by the litter layer. 

 

4.5 Discussion 
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I by shrubs accounts for 33% or 110 mm of incoming precipitation during the summer 

months (Fig 4.2 b). No values were found in the literature for comparison but the rates 

are similar to values for non-peatland species observed by Návar and Bryan (1990), 

Martinez-Meza and Whitford (1996) and Domingo et al. (1998) respectively. The canopy 

has an interception capacity of ca. 4 mm (Fig 4.2 a) and is higher than 1.4 mm recorded 

for similar ericaceae species, Calluna vulgaris (Calder et al. 1984). The larger capacity of 

our plants is likely a result of higher leaf area index (LAI), 2.4 versus 1.8, and larger 

individual leaf sizes, allowing more rain to be intercepted. Rainfall of similar amount 

results in different rates of I (Fig 4.3). Intensity and the duration of rainfall may be more 

important than gross rainfall in determining I. Distinct interception classes are observed 

with changing intensities and rainfall duration (Fig 4.4, 4.5). These trends are similar to 

those of Llorens et al. (1997), who indicated that short with high intensity, long with low 

intensity, and medium with low intensity events produced increasingly higher I rates. The 

study was conducted in a wet year, where the average rainfall was 50 mm higher than the 

30-year average (Environment Canada, 2007). However, I becomes more of a concern 

during drier or drought years, and may have a substantial impact on the water availability 

during that period. Based on the interception capacity, events ≤ 4 mm are almost 

completely intercepted. Therefore these events have a greater impact on reducing water 

availability at the soil surface. Larger more intense events contribute 4 mm to the canopy 

before the remaining water reaches the surface and events over 4 mm are important for 

increasing or maintaining the water content at the soil surface. Precipitation events less 

than 3 mm occurred 9 times over the season compared to 4 times for events greater than 

30 mm, while events less than 20 mm accounted for ca. 45% of the gross rainfall (Fig 4.1 
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a). Coupled with a higher percentage of rainfall intercepted for small events, drier years 

may have a higher proportion of these events and further reduce water availability at the 

peat surface. Errors with the interception measurement occurred when there was overflow 

of TF collectors, which occurred for the three events greater than 40 mm. This resulted in 

an overestimate of interception values for the study by up to 10 mm. 

 

The linear relationship between litter mass and MSC in this study was also observed by 

(Sato et al. 2004). The MSC (2 mm kg-1) observed in my study falls within the range of 

the previous studies. Pitman (1989) recorded MSC of 4.8 mm for bracken litter, while 

Putuhena and Cordery (1996) found values of 2.28 mm and 1.38 mm for pine and 

eucalyptus litter and Sato et al. (2004) reported values of 1.59 mm and 1.56 mm for C. 

japonica and L. edulis, respectively. The mass/thickness of the litter alters Cmin (Fig 4.11) 

due to changes in the distribution of flow channels within the litter (Sato et al. 2004). As 

the mass and thickness increases, the number of flow channels within the litter increases 

causing more lateral flow and distribution and retention of water throughout the litter. At 

higher mass/thickness the surface area and number of pore spaces is increased providing 

a greater capacity of water to be held by adhesion and capillary action respectively. Cmin 

at 20 mm h-1 was greater than MSC by 0.2 mm. At this intensity, the highest observed in 

the field, the litter becomes saturated. The higher value is possibly a combination of 

water absorbed into the leaves and that held within the litter matrix.  

 

Average daily Et was 2.5 mm day-1 or 211 mm over the season, which represents 63% of 

precipitation and the rates are comparable to those recorded by Van Seters and Price 
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(2001) of 2.4 mm day-1 for similar surfaces. Et reported from baulks have typically been 

lower than trenches (Van Seters 1999). Overall, these trends were reversed for this study. 

However, there were instances where trench Et was greater than the baulks (Fig 4.6 a). 

This may be a result of oscillations between wet and dry periods, where under the wetter 

regime Et from baulks were higher than trenches. Baulks are a higher relief element and 

may experience greater turbulence and higher Q* than trenches. LAI of shrubs is higher 

for baulks (2.7) than trenches (1.5) (see Appendix A3). Moreover, the drainage ditches 

were blocked for this study, raising the water table by 30 cm (Ketcheson personal 

communication, May 2008) increasing the overall wetness of the site. Wetland Et is 

controlled by water table levels and vegetation cover (Lafleur and Roulet 1992) and it 

may be safe to assume that if soil water was not a limiting factor, and coupled with higher 

turbulence, Q* and LAI, Et would be higher from the baulks than trenches. Low R2 values 

(Fig 4.7 b) suggest that Et is controlled more by soil matric force and moisture than 

available radiant energy. Transpiration as a percentage of Et was higher than E (Fig 4.8), 

which is typical of this relationship (Liu et al. 2002; Lauenroth and Bradford 2006; 

Yepez et al. 2007) and suggest that the soil surface water balance is influenced more by 

plant than direct soil water loss. 

 

The litter layer reduced water loss by evaporation by 18% and 60% in the field and lab, 

respectively. E from litter-covered peat was lower than bare peat (Fig 4.12 a). These 

trends were similar to other studies using mulch (Bristow 1988; Shangning and Unger 

2001) and litter (Murphy and Lodge 2001). The laboratory experiments indicate that by 

day 47, E from the bare peat was substantially lower than the litter covered surfaces (Fig 
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4.12 a). Shangning and Unger (2001) observed similar trends, with lower overall 

evaporation rates under mulched soil. They noticed that the evaporation rate under the 

bare soil decreased over time, eventually becoming lower than the mulched soil, thus 

suggesting that mulch is important for short term water conservation. However, using the 

evaporation rate to indicate short-term storage is misleading, as the rates do not specify 

changes in soil moisture, which is critical for survival of plants. Higher θ under mulched 

surfaces have been recorded (Bristow 1998; Cook et al. 2006; Price 1997) and my results 

indicate like these studies, litter maintains greater θ within the soil. Using cumulative 

water loss and θ show that the litter was indeed important in the short term water storage, 

as θ was significantly (P < 0.05) lower under bare peat by day 6. More importantly, long 

term storage is evident, which becomes significant under drought conditions. Price and 

Whitehead (2004) found similar results for θ and soil water pressure (ψ) under litter 

covered peat and suggest that the litter layer is important in both the short term and long 

term storage of water in the soil. 

 
The litter acts as a physical barrier, reducing water loss through this layer. Higher RH 

observed within the litter in the field (Appendix A4) and the lower values over litter 

versus bare peat (Fig 4.12 b) suggest that the litter decreases the upward movement of 

water vapour, which must now flow through the interstices within the litter before 

reaching the atmosphere. The thicker litter layers provide a greater distance and more 

complex flow path for the vapour to follow, resulting in lower evaporation rates. 

 

4.6 Conclusion 
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The shrubs intercept 120 mm from the canopy and litter layer and transpire 

approximately 142 mm from June to August, making 22% of rainfall available in the peat 

surface. These water losses may be critical in their effect on the growth and survival of 

Sphagnum, the primary peat building vegetation. In my analysis of I and T losses, the 

primary water supply occurred in the form of rainfall. However, the water table can be 

considered as another water source for T, once kept in close contact to the root system. θ 

and ψ in the upper 2 cm of soil at the site shows a relatively good relationship with water 

table depth (Price and Whitehead 2001), and with the rise and increased stability of the 

water table we expect soil moisture to be higher and more consistent over the summer.  

 

Over the summer season E was reduced by 17 mm by the litter layer. Therefore, rainfall 

interception by litter was offset by the water reduction effects of the litter, suggesting that 

the litter layer potentially maintained a higher θ in the peat surface over the summer. θ 

and ψ of over 50% and -100 cm is necessary for Sphagnum establishment (Price and 

Whitehead 2001) at this site and is maintained over a longer period under a litter cover 

(Price and Whitehead 2004). However, the litter layer may act as a barrier, cutting off or 

reducing capillary flow to the surface. In harvested sites where a litter layer has been 

established before Sphagnum, the spread of spores and fragments will be limited to the 

surface of the litter. With the litter acting as a barrier to capillary rise, recolonisation by 

Sphagnum may hindered except for areas frequently inundated with water (Price and 

Whitehead 2004). The evaporation-retarding effects of the litter is not lost under the 

saturated conditions of the peat as the difference in evaporation from litter and bare peat 
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is the greatest under saturated conditions and litter experiments that even a very thin layer 

(< 1 cm) would maintain sufficiently high θ.  

 

Ericaceous shrubs may be beneficial to the growth and survival of Sphagnum in natural 

bogs. Observations in field have shown that Sphagnum becomes dry, brittle and in some 

cases white when vascular plants are removed from the moss surface. Shrubs act as a 

companion species, aiding in the survival of the moss (Ferland and Rochefort 1997; 

Boudreau and Rochefort 1999). Et rates over Sphagnum carpets have been shown to be 

6.5% lower when covered by a shrub layer (Crum 1988), and Heijmans et al. (2001) 

concluded that lower E rates of Sphagnum surfaces with a shrub cover resulted from 

reduced winds speeds through the canopy. We suggest raising the water table above -25 

cm to offset I and T losses and the capillary barrier effect of the litter. Higher water tables 

provide the hydrological conditions needed for development of Sphagnum (Price and 

Whitehead 2001) and allow the beneficial features of the shrubs such as shading to 

proceed.  
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5.0 Laboratory investigations of Soil Water flux under 

Sheep-laurel (Kalmia angustifolia) at varying Water table 

depths and its effect on Sphagnum regeneration 

 

5.1 Introduction 

Changes in hydrology after harvesting of natural bogs create conditions unsuitable for the 

reestablishment of Sphagnum. Higher bulk densities (Price 1997), lower specific yield 

and hydraulic conductivity (Van Seters and Price 2002) and low water table levels (Price 

1997) reduce upward capillary flow of water needed for the survival of the moss. The 

growth of ericaceous shrubs is not limited by such conditions, resulting in the shrubs (eg. 

Kalmia angustifolia) representing more than 70% of the total surface cover in manually 

block-cut peatlands in Québec (Girard et al. 2002; Poulin et al. 2005). The high 

abundance of these shrubs has a major influence on water availability. The accessibility 

of water at the surface of harvested peat is important in the restoration of Sphagnum 

(Price and Whitehead 2001). To date we do not know much about the soil water flux 

processes under ericaceous shrubs especially in harvested peatlands.  

 

The water availability of soils is affected by interception and transpiration losses from 

vascular plants (Dingman 2002). In natural and harvested bogs evapotranspiration (Et) is 

the major source of water loss (Price and Maloney 1994 ; Van Seters and Price 2001) and 

is controlled by the vegetation cover and the water table depth (Lafleur and Roulet 1992). 

Ericaceous shrubs may be responsible for a substantial proportion of Et losses from the 
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surface (Takagi and Tsuboya 1999) and is evident as Et decreases when the water table 

falls below the root system of the vascular plants (Romanov 1968; Lafleur et al. 2005). 

To meet daily transpiration (T) requirements, plants remove water from soil. The amount 

of water extracted is related to rooting depth (Sharp and Davies 1985; Coelho and Or 

1999) and is greatest at the highest root density (Moore et al. 2003). Water absorbed by 

the roots during T reduces soil moisture content and the water pressure of the soil, which 

continue to decrease as long as T persists and there is no recharge by precipitation. The 

greatest moisture loss typically takes place in the upper layers of the soil (Caldwell et al. 

1998). However, the roots of many plants remain in contact with deeper, moister soil 

layers and, when T is reduced water may be redistributed from deeper to upper layers 

along a potential gradient and is known as hydraulic lift (Richards and Caldwell 1987; 

Dawson 1993; Topp et al 1996). Hydraulic lift may be an important ecosystem function 

as water brought to the surface can used by plants unable to access deeper water (Corak 

et al. 1987; Richards and Caldwell 1989), and may be crucial to the survival of the plant 

in drought periods (Dawson 1993).  In natural and harvested bogs little is known about 

the role ericaceous shrubs play in the water fluxes within Sphagnum cushions and peat. 

The volumetric water content (θ) of the upper layers of Sphagnum cushions remain fairly 

consistent despite the water table lowering over the season (Yazaki et al. 2006). This 

upward water movement and storage can be attributed to the capillary water-transport 

capacity of Sphagnum (Yazaki et al. 2006). The moss becomes more decomposed deeper 

in the cushion with a consequent decrease in pore size (Hayward and Clymo 1982) and 

higher unsaturated hydraulic conductivities at reduced pressures (Price et al. 2008), 
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which aid in capillary water transport. However, this movement has never been linked to 

hydraulic lift caused by the shrubs. 

 

Much work has been done on the conditions needed to restore Sphagnum on abandoned 

harvested peatlands (Price et al. 2003; Rochefort et al. 2003) and hydrologically soil 

water pressure (ψ) over -100mb is necessary for Sphagnum establishment (Price and 

Whitehead 2001). Vascular plants have been shown to act as nurse plants aiding in the 

reestablishment of Sphagnum (Ferland and Rochefort 1997; Boudreau and Rochefort 

1999) creating more suitable microclimate and hydrological conditions (Lavoie et al. 

2005). Therefore the high abundance of ericaceous shrubs in cutover peatlands must play 

a major role in the soil water flux and availability at the site, thus impacting the 

regeneration of Sphagnum. To provide insight into these processes, monoliths containing 

Sheep-laurel (Kalmia angustifolia) were removed from a cutover peatland and water 

fluxes within the monoliths studied under artificially manipulated water table levels. This 

study seeks to determine how Sheep-laurel use soil water during diurnal transpiration 

fluxes. More specifically I will quantify: 1. the transpiration rates, 2. changes in 

volumetric moisture content and soil water pressure under a falling water table and 3. the 

presence  of hydraulic lift under the changing water table depths. 

 

5.2 Site description and Methods 

The Cacouna peatland (47°53' N, 69°27' W) is located approximately 10 km north-east of 

Riviere-du-Loup, Québec. It is a domed bog, covering an area of 172 ha at an average 

elevation of 83m (Girard et al. 2002). Following abandonment, the Cacouna bog has 
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undergone a natural vegetation succession. Plants typical of peatlands in that region have 

recolonized most of the bare peat surface. Ericaceous shrubs, such as Kalmia 

angustifolia, Chamaedaphne calyculata and Ledum groenlandicum are the dominant 

plant species covering ca. 79-90% of the surface (Girard et al. 2002). The distribution of 

Sphagnum moss is sparse (<10%) and generally limited to wet areas of trenches and 

topographic depressions in the bog (Girard et al. 2002). 

 

5.2.1 Preparation of experimental bucket 

The experimental buckets acted as a tension device, allowing simulation of water tables 

deeper than the bottom of the bucket. Six 30 cm diameter and 44.5 cm high buckets were 

used. A brass nipple was inserted at the base of the bucket and the inside orifice was 

screened using a geotextile cloth to prevent clogging of the nipple. A 2 cm layer of coarse 

sand covered the bottom of the bucket to provide good hydraulic connection to the inner 

nipple opening. A 5 cm layer of glass beads (60 – 110 μm) was placed over the sand 

which formed a tension device that remained saturated at the pressures imposed in this 

study, ψ being controlled by the position of the flexible manometer tube connected to the 

brass nipple. Water was added and drained to compact the sand and beads before the 

sample was put in.  

 

5.2.2 Collection of samples 

Six 32 cm deep peat monoliths, consisting of bare peat and Sheep-laurel were collected 

on 4th October 2007 from the Cacouna peatland (Fig 3.2). Sheep-laurel was selected as it 

is the most abundant ericaceae species at Cacouna peatland (Please note that hereafter 
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shrubs refer to Sheep-laurel). An empty sample bucket, with the bottom cut out, was used 

as a saw guide to cut the sample – the bucket being progressively pushed down as the cut 

was made. Two shrub- and one bare peat- samples (no shrubs present) were obtained 

from randomly selected located along a baulk (raised area) and then repeated for a trench 

(more deeply cut area between baulks). Samples were transported to the University of 

Waterloo and stored outdoors for 2 months (October-November), where they were wet 

under natural rainfall. Litter was removed from the surface of the bare peat monoliths. 

Samples were placed ≈ 20 cm below grow lamps for 12 hours per day in a chamber with 

a temperature of 25±0.3°C and relative humidity (RH) at 36%. Vapour pressure deficit 

(VPD) was calculated from temperature and RH data. 

 

5.2.3 Evapotranspiration, soil water pressure and volumetric water content 

A mariotte bottle device was connected to the nipple at the base of the buckets and 

provided a constant supply of water, and to set the position of the water table (Fig 5.1). Et 

rates were measured daily by measuring the water loss from the mariotte bottle. T from 

the shrubs was estimated as the difference between shrub Et (bare peat and shrub bucket) 

and bare peat (bare peat only bucket) evaporation (E). 

 

θ was measured using Campbell Scientific IncTM 605 Time Domain Reflectometry 

(TDR) probes inserted horizontally at 2.5 cm, 5 cm, 10 cm, 20 cm and 30 cm below peat 

surface (Fig 5.1). The θ was calculated using a linear calibration for peat from the same 

site (Whitehead 1999). ψ in the peat profile was measured with L-shaped tensiometers 

inserted horizontally at the same depths (Fig 5.1).   
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The water table within the bucket was manipulated using the mariotte bottle and initially 

raised to the surface to saturate the peat, then lowered to 5 cm below the surface (Fig 

5.1). θ of the shrub monoliths were monitored every hour, while that of the bare peat 

monolith was measured once daily (due to problems with loggers). ψ was measured every 

1–2 days. The experiment was run for 17 days at -5 cm after which the water table was 

lowered to -10 (15 days), -30 (36 days) and -50 cm (12 days) (Fig 5.1). The water table 

was left at -30 cm the longest as it was thought that at this level diurnal redistribution of 

water from the lower to upper layer may readily be observed. 
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Figure 5. 1. Mariotte bottle and TDR location in experimental buckets (tensiometers 
are located at the same depth as TDR probes; arrows indicate flow of water) 
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5.2.4 Statistical analysis 

Student’s t-test and analysis of variance (ANOVA), at P = 0.05, were used to test 

significant differences of soil water pressure and volumetric water content from shrub 

and bare peat monoliths. 

 

5.3 Results 

Evapotranspiration. 

The average E and Et rates from baulk and trench buckets decreased as the water table 

was lowered, with the Et rates being higher than E at all water table levels (WT) (Table 

5.1, Fig 5.2).   
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Figure 5. 3. Cumulative Et (sqaures), E (solid line) and T (dotted line) loss at four 
water table levels 
 

T increased as WT was lowered to -30 cm but decreased when the WT was at -50 cm. T 

was 50% of Et losses over the study and ranged from 11 to 80% (Table 5.1). Cumulative 

water loss from Et, E and T was 77.2, 38.9 and 38.3 mm respectively. Cumulative water 

loss from T showed a steady increase over the study period while E showed a steady 

increase at WT of -5 and -10 cm, but showed a much slower increase at WT of -30 and -

50 cm (Fig 5.3). 

 

Table 5. 1. Average evapotranspiration rates of shrub and bare peat monoliths 
under various water table depths (Parentheses is a percentage of 
evapotranspiration) 

Water table (cm) Shrub 
evapotranspiration 

rate (mm day-1) 

Bare peat 
evaporation rate 

(mm day-1) 

Transpiration rate 
(mm day-1) 

-5 1.8 1.6 (89) 0.2 (11) 
-10 1.1 0.6 (55) 0.5 (45) 
-30 1 0.2 (20) 0.8 (80) 
-50 0.5 0.2 (40) 0.3 (60) 
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Soil water pressure (ψ) 

ψ decreased as the water table was lowered (Fig 5.4).  At WT of -5 and -10 cm a small 

drop in ψ (P > 0.05) was observed for both bare and shrub covered peat (Fig 5.4). An 

average decrease of 2 and 8 cm for shrubs and 3 and 9 cm for bare peat was observed at 

WT -5 and -10 cm respectively (Table 5.2). When WT was lowered to -30 cm there was a 

distinct drop in ψ after 11 days  in the bare peat and continued to decline rapidly at the 

2.5, 5 and 10 cm depths (Fig 5.4 a). The ψ became steady at the 20 and 30 cm level 26 

days after lowering the WT to -30 cm and remained constant until the WT was lowered to 

-50 cm (Fig 5.4 a).  Unlike bare peat, ψ of shrub covered peat showed a slow and steady 

decrease at WT = -30cm (Fig 5.4 b) and only at -50 cm was there a distinct drop in ψ (Fig 

5.4 b). At WT of -30 and -50 cm, ψ was significantly (P < 0.05) lower in the bare peat 

than the shrubs and an average decrease of 24 and 16 cm and 83 and 34 cm was observed 

for shrubs and bare peat, respectively (Table 5.2). 
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Figure 5. 4. Average soil water pressure (cm) at all tensiometer depths for a. bare 
peat and b. ericaceous shrub (Standard error bars are for 2.5 and 30 cm depth 
profile) 
 

ψ reaches -100 cm at 2.5 cm below the surface in the bare peat by day 57 under a -30 cm 

WT, while the shrub never reached -100 cm over the sample period (Fig 5.4). ψ was 

progressively higher deeper in the profile for both monolith types (Fig 5.4), suggesting an 

upward flow from the bottom to the surface of the peat. 

 

Table 5. 2. The decrease in soil water pressure (cm) at different depths in peat 
profile for different water table levels. (Parenthesis indicates the number of days the 
water table was set at a particular level) 
 
Water table 
(cm) 

Change in soil water pressure (cm) 

Shrubs (tensiometer depth/cm) Bare peat (tensiometer depth/cm) 

2.5 5 10 20 30 2.5 5 10 20 30 
-5 (17) 2  4  2  2  2 3  4 5  3  3  
-10 (15) 7  9  8  8  7  9 10  10  8  10  

-30 (36) 29  25.6  24  22  21  160  93  62  54  50  
-50 (12) 28  17  13  12  10 92  36  18  9  16  
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Volumetric water content (θ) and diurnal water flux 

Volumetric water content was consistently higher deeper in the peat profile and decreased 

at all levels within the peat monolith for both bare and shrub covered peat throughout the 

study period (Fig 5.5). The percentage loss in θ from all samples decreased from the 

surface to the base of the monolith (Table 5.3).  However, the percentage loss of θ the 

through the profile was different for shrubs and bare peat. When the WT was high, (2.5 

and 5 cm) losses were higher in bare peat (64 & 58%) than shrubs (39 & 39%), while at 

greater depths (10, 20 and 30 cm) losses were greater from the shrubs than from bare peat 

(Table 5.3).  

 

0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1 3 6 10 12 14 16 19 22 24 30 32 37 53 55 57 64 67 70 73 75 82

2.5 5

10 20

 

-5 cm -10 cm -30 cm -50 cm 

a. 

θ 

Number of sampling days 

Bare peat 

 

 

 

 

 

 65



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 5 10 14 17 20 24 27 30 33 36 39 55 58 61 64 67 70 73 76 79

0.9 2.5 5
10 20

θ

-5 cm -10 cm -30 cm -50 cm 

 

Number of sampling days 

b. Shrubs 

 

Figure 5. 5. Volumetric water content (θ) at 2.5 to 20 cm depths for a. bare peat and 
b. ericaceous shrub at different water table levels. (Standard error bars are for 2.5 
and 20 cm depth profile) 
 

Table 5. 3. Percentage loss in volumetric water content for bare and shrub covered 
peat at different depths in the peat profile from the start to the end of the study 
Sampling depth 

(cm) 

Percentage loss of volumetric water content 

Bare peat Ericaceous shrubs 

2.5 45 35 

5 40 37 

10 28 35 

20 25 37 

30 5 11 

 

The daily change in θ was observed for each sample throughout the peat monolith and 

was plotted as cumulative change (Fig 5.6). Cumulative change from the 2.5 (Fig 5.6 a) 

and 5 cm (not shown) layers were higher under the bare peat, while at 10, 20 (Fig 5.6 b & 

c) and 30 (not shown) cm water loss was higher for shrub covered peat. The greatest 

deviation in water loss between bare and shrub covered peat occurred after the water 

table was dropped to -30 cm (Fig 5.6). 
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study period. (Vertical lines represent lowering of water table to -10, -30 and -50 cm 
respectively) 

-5 cm -10 cm -30 cm -50 cm 

Δθ
 

Number of sampling days 

c. 

-5 cm -10 cm -30 cm -50 cm 

Δθ
 

Number of sampling days 

b. 

 67



 

The diurnal soil water flux was observed under the shrubs from 2.5 to 20 cm below the 

peat surface. Small (0.01) daily changes in θ were observed over the study (Fig 5.7). At 

WT between -5 and -10 cm water loss during the day was ca. 2 times that at night. The 

greatest difference in diurnal θ occurred at the 20 cm layer being 4 times higher in the 

day. When the WT was lowered between -30 and -50 cm daytime water use was twice 

that of night-time use and still greatest at the 20 cm layer (Fig 5.7). Daytime water use at 

the -10 cm depth doubled for WT between -30 and -50 cm. As the upper layers dries and 

the plant roots remain in contact with moist deeper layers hydraulic lift is typically 

observed. However, this was not recorded at WT ≥ -30 cm, where θ declined throughout 

the day (Fig 5.7). Unlike θ, VPD increased between 8 – 22:00 hr but declined between 22 

– 07:00 hr (Fig 5.7).  
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Figure 5. 7. Average daily diurnal changes in volumetric water content under 
shrubs at 2.5, 5, 10 and 20 cm below the surface and vapour pressure deficit of the 
air when the WT was between a. -5 and -10 cm and b. -30 and - 50 cm 
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5.4 Discussion 

Et and E for shrubs and bare peat decreased as the WT was lowered (Fig 5.2). θ near the 

soil surface was greater a higher than low WT (Fig 5.5). High near-surface soil moisture 

increases the maximum rate that the soil-vegetation surface can supply water to the 

atmosphere. Eagleson (1978) defined this rate as the soil controlled Et rate. The reduced 

E and Et rates observed with falling WT is likely caused by the decreased rate of capillary 

rise associated with the lower WT. For natural peatlands a distinct decrease in the 

dynamic upward flow of water through capillary rise occurs when water tables fall 

beyond 30 cm from the surface (Romanov 1968; Schouwenaars 1993). This effect is 

further exaggerated in cutover peat (Price 1997) as low hydraulic conductivities reduce 

upward flow (Scholtzhauer and Price 1999). With low capillary rise, the rate at which 

water can be supplied to the atmosphere is reduced, lowering E. Although Et and E losses 

are reduced with lower WT, T and the ratio of T/Et increases until the WT falls below -30 

cm (Table 5.1). Cumulative water loss from E and T are about the same (Fig 5.3), 

however, increased T at lower WT shows that it becomes the major water loss under 

falling WT and the influence of shrubs on water availability becomes more substantial at 

these lower levels. When capillary rise decreases and water loss from E is reduced soil 

water can still be extracted from the root system and lost by T. At WT of -50 cm the ratio 

of T/Et decreases and may be a result of the water table occurring beyond the root zone or 

increased soil water deficit. The former is supported by Romanov (1968) who recorded a 

reduction in Et when water table fell below the rooting depth of shrubs (15 – 20 cm) and 

Lafleur et al. (2005) who recorded similar observations for natural peatlands. At high θ 

sufficient water can be supplied to plants to meet transpiration needs. As soil dries and θ 
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decreases a larger water deficit is created in the soil. To conserve water the plants close 

stoma, reducing water loss by T (Dingman 2002). θ decreased through out the study (Fig 

5.5) and the low T at -50 cm may therefore be more reasonably explained by stoma 

closure. 

 

The greater cumulative water loss from shrub-peat monolith (Fig 5.3) suggests that 

subsequent drying of the soil would occur at a higher rate under shrubs than bare peat. 

However, in the upper soil layers θ and ψ were consistently higher for shrub-covered peat 

than bare peat and show that the bare peat dried at a faster rate (Fig 5.5 b). The presence 

of a thin litter layer (Chapter 4) and lower net radiation under the canopy (McNeil and 

Waddington 2003) reduces water loss from the surface of shrub covered peat. The greater 

cumulative daily change in θ at the 10, 20 and 30 cm depth below the shrub-peat surface 

(Fig 5.6, Table 5.3) indicate that the greatest water loss occurs from these levels. These 

values were between 55 and 65% of total losses from all samples. The higher water losses 

from the lower part of the profile is likely a result of greater root density and distribution 

at these depths as water loss under shallow rooted plants are generally related to root 

length distribution and density (Sharp and Davies 1985; Coelho and Or 1999). Moore et 

al. (2002) recorded a maximum ericaceous shrub root depth up to 60 and 40 cm for 

hummocks and hollows respectively, while maximum densities between 20 and 40 cm 

and between 20 and 30 cm were observed, respectively. Lance (2008) recorded maximum 

root densities between 10 – 15 cm. Fine roots, which are more responsible for extracting 

water from the peat have a higher distribution between 10 – 25 cm (Moore et al. 2002; 

Lance 2008). The root distributions for these samples are unknown, but we assume that 
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the higher percent water loss occurred as a result of greater root densities between 10 and 

20 cm. Under saturated conditions provided at high water table levels the greater density 

of roots occurring between 10 and 30 cm in the monolith may preferentially be using 

water from lower in the profile. In the experiment the water table was maintained at a set 

level and constantly fed by the mariotte bottle. Therefore water used by the roots can be 

quickly replaced by water from the mariotte bottle. The greater water use from these 

deeper layers coupled with the effects of the litter layer and canopy reduces water loss 

from the upper surface under a falling water table. 

 

Consistent nightly diurnal increases in θ were not observed over the study (Fig 5.7). 

Hydraulic lift has been demonstrated under a number of deep (Richards and Caldwell 

1987, 1989; Dawson 1993) and shallow rooted plants (Vetterlein and Marschner 1993; 

Wan et al. 1993). The previous studies have focused on hydraulic lift in arid regions, 

under drier soil conditions. The θ of the peat in this experiment remained above 50% and 

may not provide the critical pressure difference between the root and soil required for 

large water redistribution by hydraulic lift.  VPD is important in controlling both 

transpiration (Wilson et al. 2001; Ray et al. 2002) and night-time evaporation (Iritz and 

Lindroth 1994). VPD (Fig 5.7) and air temperature (25±0.3°C) did not differ substantially 

when lights were on and off suggesting that E did not differ considerably during these 

cycles. Consequently there was little opportunity for diurnal hydraulic lift. The VPD 

observed in the lab was higher than what is typically observed in bogs. At sufficiently 

high VPD the atmospheric demand for water becomes too great and the stoma of the 

leaves close, reducing transpiration. It is unknown at what VPD stomatal closure in 
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ericaceae occurs. If the VPD was too high and transpiration was reduced, the water loss 

observed under the shrubs may be underestimated over the study.To overcome the 

problems with VPD and temperature I suggest conducting a similar experiment in the 

field. Unlike the lab, VPD and temperature in the field is reduced at night resulting in 

lower E. Under these conditions and adjusting for increased θ by fog or rain, field 

validation will prove if hydraulic lift occurs under the cover of an ericaceous shrub.  

 

Price and Whitehead (2001) suggest that θ and ψ of over 50% and -100 cm is necessary 

in the upper soil layer for the successful reestablishment of Sphagnum at the study site. 

This study indicates that soil covered by Sheep-laurel maintain θ and ψ of over 50% and -

100 cm over a longer period than bare peat, and therefore assist in maintaining the 

hydrological conditions needed for successful regeneration and reestablishment of 

Sphagnum. 

 

5.5 Conclusion 

Under a falling water table, water loss from Sheep-laurel is higher than bare peat. Despite 

the greater water loss from the shrubs, the upper 5 cm of the bare peat dried at a faster 

rate. This is possibly a result of water loss reduction provided by a sparse litter layer 

(Price and Whitehead 2004; Chapter 4) and shading by the canopy (McNeil and 

Waddington 2003). The experiment shows that threshold values of ψ of -100 cm (Price 

and Whitehead 2001) in the upper 2.5 cm were not exceeded under an ericaceous shrub 

for most of the study and thus shrubs can be useful in the natural recolonisation of the 

moss. A water table above -25 cm is recommended to maintain suitable hydrological 
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conditions at the surface (Price and Whithead 2001). At this WT, my data suggest the 

shrubs preferentially use the deeper water, and thus maintain higher θ in the upper 5 cm 

of the peat.  
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6.0 Conclusion and Recommendations 

The Cacouna peatland is a harvested bog and receives most of its water from 

precipitation, and as such, interception from the canopy and the litter layer is particularly 

important, being the first and second source of water loss from the system, respectively. 

Interception from the canopy (33.7%) and litter (7%) were 40.7% or 120 mm of summer 

rainfall. This study suggests that rainfall intensity and duration were more important than 

gross rainfall in determining the amount of water intercepted. Other external factors such 

as temperature, humidity and frequency of events also influence rainfall interception, but 

to a lesser degree. Properties of the canopy (LAI) and litter (mass and thickness) also 

affect interception. The effect of these factors, excluding litter mass/thickness, were not 

observed over the study and provide future research opportunities in understanding the 

process of rainfall interception. It is important to note that interception values obtained 

are a feature of the annual rainfall regime. Therefore the overall depth of rainfall 

intercepted is applicable for the 2007 season and will change in subsequent years. 

However, the interception capacity of the canopy and litter is fixed and one can use these 

values to predict interception under changing rainfall regimes. 

 

After interception the remaining precipitation arriving as throughfall, infiltrates the peat 

and is temporarily stored. This water is eventually lost primarily by evapotranspiration. 

Evapotranspiration from shrub covered areas was 2.5 mm day-1 (211 mm) over the 

season. Transpiration was 68% (142 mm) of total evapotranspiration losses, and 

represented the greatest water loss from the shrubs.  Evaporation from the litter was 

lower than bare peat preventing 17 mm of water being lost to the atmosphere. The litter 
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maintains higher water contents in the peat and is important in both short and long term 

water conservation. The study shows that the water loss through interception by litter is 

offset by reduced evaporation rates under it, and suggests litter is a more important tool 

for water storage at the peatland.  

 

The laboratory experiments provided an interesting insight into soil water fluxes under an 

ericaceous shrub cover in a controlled environment. Evapotranspiration from the shrubs 

were higher than bare peat at all water table levels. However, most of this water loss 

occurred deeper in the profile as water uptake between 10 and 30 cm below the peat 

surface was greater under the shrubs. Higher water uptake at these levels matches up well 

with the maximum root densities recorded by Moore et al. (2002) and Lance (2008). 

Hydraulic lift is a useful ecosystem function as redistributed water may be used by plants 

unable to access deeper water. However, hydraulic lift was not observed in this study. 

This possibly due to: 1. the consistent vapour pressure deficit observed during the day 

and night suggests a steady evaporation rate. Even if there was an increase in moisture 

content the evaporation rates may have masked these changes. 2. Physiologically, 

ericaceous shrubs may not be able to redistribute water. This is possibly due to shrubs 

being found in a wet environment lacking substantial soil water deficits. Without such 

deficits hydraulic lift is not necessary. 

 

The use of vascular plants in the reestablishment of Sphagnum has been observed in 

abandoned peatlands (Ferland and Rochefort 1997; Boudreau and Rochefort 1999). 

Sphagnum development is enhanced in the presence of plants, particular cotton grass 
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(Eriophorum vaginatum) (Lavoie et al. 2005). It has been suggested that the enhanced 

growth is due to the creation of suitable hydrological conditions caused by shading 

(Boudreau and Rochefort). Crum (1988) suggests that lower evaporation rates over moss 

surface are due to shading from shrubs, while Heijamns et al. (2001) attribute it to 

reduced wind velocities. Lower evaporation results in reduced soil water loss. Whatever 

the reason, observations in the field indicate that the moss becomes dry and brittle and 

eventually dies after the removal of ericaceous shrubs (McNeil and Waddington 2003). 

Price and Whitehead (2001) suggest that volumetric moisture content (θ) and soil water 

pressure (ψ) above threshold values of 50% and -100 cm respectively at the Cacouna 

peatland and ψ over -100 cm at other peatland types is needed for Sphagnum 

reestablishment. The lab experiments showed that shrubs maintained θ and ψ above the 

threshold. This was likely due to the presence of a fine litter layer, which reduced soil 

evaporation. These results are encouraging especially in abandoned harvested peatlands 

where no active restoration techniques are applied. In such situations the abundance of 

ericaceous shrubs will prove useful in Sphagnum development. 

 

The major concern with using shrubs as companion species are the water losses through 

interception and transpiration. To overcome these losses it is recommended that the water 

table be raised within 20 cm of the surface. At this level water can be supplied to the peat 

surface by capillary rise, maintaining θ and ψ above 50% and -100 cm respectively 

(Whitehead 2001). At the higher water table, water is supplied to the most active layers 

of the root zone reducing the need of the roots to extract water from the surface. The litter 

layer also poses a problem as it acts as a barrier cutting off capillary flow between 
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Sphagnum and peat surface (Price and Whitehead 2004). However, it is possible for 

Sphagnum to establish itself over the litter in areas saturated at the surface (Price and 

Whitehead 2004). The results show that the evaporation retarding effects are not lost 

when the peat is saturated.  

 

The main goal of peatland restoration is to return harvested sites to a naturally peat 

generating ecosystem. An active peat accumulating system is important as it becomes a 

sink of atmospheric carbon. To acquire the benefits of the shrubs such as shading and 

reduced wind speed one must ensure that the water table is sufficiently high to offset 

water losses from interception and supply enough water to meet daily transpiration rates. 

As such, ericaceous shrubs may be beneficial in the reestablishment of a Sphagnum cover 

at abandoned peatlands that have not undergone active restoration and, even at active 

restoration sites I suggest mixing of ericaceous seeds with Sphagnum diaspores, which 

would benefit the moss as it grows. The positive effects of the shrubs are not limited to 

the Cacouna field site. The research from this thesis will benefit restoration in other 

peatlands across North America and Europe where the application of ericaceous shrubs or 

similar plant types will be effective in the growth and regeneration of Sphagnum, the 

primary peat forming vegetation. 

   

 

Future studies of Ericaceous shrub – Sphagnum – water interactions may include; 

1. Interception of ericaceous shrubs in natural bogs. Including throughfall and 

stemflow and channelisation of rainfall along the roots. 
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2. Observations of diurnal fluctuations of volumetric water content in the field. This 

reduces the error brought about by consistent air temperatures observed in the 

laboratory experiments. 

3. Analyses of maximum root depth and densities of ericaceous shrubs, which would 

allow us to link the zone of maximum water uptake with root distribution. 

4. The influence of roots in the flow (hydraulic conductivity) and retention of water 

within the peat. This can be done using under a series of laboratory experiments 

(Price et al. 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 79



References 
 
Boudreau, S. and Rochefort, L. (1999) Éstablishment de Sphaignes Réintroduites Sous 
Diverses Communautés Végétales Recolonisant les Tourbières Après L'Exploitation. 
Écologie: 30, 53-62 
 
Breshears, D. D., Rich, P. M., Barnes, F. J. and Campbell, K. (1997) Overstory-Imposed 
Heterogeneity in Solar Radiation and Soil Moisture in a Semiarid Woodland. Ecological 
Applications: 7, 1201-1215 
 
Breshears, D. D., Nyhan, J. W., Heil, C. E. and Wilcox, B. P. (1998) Effects of woody 
plants on microclimate in a semiarid woodland: Soil temperature and evaporation in 
canopy and intercanopy patches. International Journal of Plant Sciences: 159, 1010-1017 
 
Bristow, K. L. (1988) The Role of Mulch and its Architecture in Modifying Soil 
Temperature. Australian Journal of Soil Research: 26, 269-280 
 
Calder, I. R., Hall, R. R., Harding, R. J. and Wright, I. R. (1984) The Use of a Wet-
Surface Weighing Lysimeter System in Rainfall Interception Studies of Heather (Calluna 
vulgaris). Journal of Climate and Applied Meteorology: 23, 461-473 
 
Caldwell, M. M. and Richards, J. H. (1989) Hydraulic lift: water efflux from upper roots 
improves effectiveness of water uptake by deep roots. Oecologia: 79, 1-5 
 
Caldwell, M. M., Dawson, T. E. and Richards, J. H. (1998) Hydraulic lift: consequences 
of water efflux from the roots of plants. Oecologia: 113, 151-161 
 
Castro, J., Zamora, R., Hódar, J. A. and Gómez, J. M. (2002) Use of Shrubs as Nurse 
Plants: A New Technique for Restoration in Mediterranean Mountains. Restoration 
Ecology: 10, 297-305 
 
Coelho, E. F. and Or, D. (1999) Root distribution and water uptake patterns of corn under 
surface and subsurface drip irrigation. Plant and Soil: 206, 123-136 
 
Cook, H.F., Valdes, G.S.B. and Lee, H.C. (2006) Mulch effects on rainfall interception, 
soil physical characteristics and temperature under Zea mays L. Soil & Tillage Research: 
91, 227–235 
 
Corak, S. J., Blevins, D. G. and Pallardy, S. G. (1987) Water Transfer in an 
Alfalfa/Maize Association. Plant Physiol: 84, 582-586 
 
Crockford, R. H. and Richardson, D. P. (2000) Partitioning of rainfall into throughfall, 
stemflow and interception: effect of forest type, ground cover and climate. Hydrological 
Processes: 14, 2903-2920 
 

 80



Crum, H. (1988) A Focus on Peatlands and Peat Mosses. The University of Michigan 
Press: pp 148-149 
 
Dawson, T. E. (1993) Hydraulic lift and water use by plants: implications for water 
balance, performance and plant-plant interactions. Oecologia: 95, 565-574 
 
Dingman, S. L. (2002) Physical hydrology 2nd edition. Waveland Press, Inc. 
 
Domingo, F., Sánchez, G. Moro, M. J., Brenner, A. J. and Puigdefábregas (1998) 
Measurement and modelling of rainfall interception by three semi-arid canopies. 
Agricultural and Forest Meteorology: 91, 275-292 
 
Eagleson, P. S. (1978) Climate, soil and vegetation. Water Resources Research: 14, 705-
776 
 
Environment Canada (2007) Canadian Climate Normals 1971 – 2000. 
http://www.climate.weatheroffice.ec.gc.ca/climate_normals/results_e.html?Province=AL
L&StationName=St&SearchType=BeginsWith&LocateBy=Province&Proximity=25&Pr
oximityFrom=City&StationNumber=&IDType=MSC&CityName=&ParkName=&Latitu
deDegrees=&LatitudeMinutes=&LongitudeDegrees=&LongitudeMinutes=&NormalsCla
ss=A&SelNormals=&StnId=5844& 
 
Ferland, C. and Rochefort, L. (1997) Restoration techniques for Sphagnum-dominated 
peatlands. Canadian Journal of Botany: 75, 1110-1118 
 
Gazal, R.M., Scott, R.L., Goodrich, D.C. and Williams, D.G. (2006) Controls on 
transpiration in a semiarid riparian cottonwood forest. Agricultural and Forest 
Meteorology: 137, 56-67 
 
Ginter, D. L., McLeod, K. W. and Sherrod Jr, C. (1975) Water stress in longleaf pine 
induced by litter removal. Forest Ecology and Management: 2, 13-20 
 
Girard, M., Lavoie, C. and Thériault, M. (2002) The Regeneration of a Highly Disturbed 
Ecosystem: A Mined Peatland in Southern Québec. Ecosystems: 5, 274-288 
 
Gómez, J. A., Giráldez, J. V. and Fereres, E. (2001) Rainfall interception by olive trees in 
relation to leaf area. Agricultural Water Management: 49, 65-76 
 
Hares, M. A., Novak, M. D., 1992b: Simulation of surface energy balance and soil 
temperature under strip tillage. II. Field test. Soil Science  Society of America. Journal: 
56, 29-36. 
 
Hayward, P. M. and Clymo, R. S. (1982) Profiles of water content and pore size in 
Sphagnum peat, and their relation to peat bog ecology. Proc. Royal Society of London, 
Ser. B: 215, 299-325 
 

 81



Heijmans, M. M. P. D., Arp, W. J. and Berendse, F. (2001) Effects of elevated CO2 and 
vascular plants on evapotranspiration in bog vegetation. Global Change Biology: 7, 817-
827 
 
Ivanov, K. E. (1981). Water movement in mirelands. Academic Press, London 
England.1981.Translated by Arthur Thomson and H.A.P.Ingram. 276 
 
Joosten, H., and Clarke, D. (2002) Wise use of mires and peatlands: Background and 
principles including a framework for decision-making. International Mire Conservation 
Group: International Peat Society. 
 
Keys, D. (1992) Canadian peat harvesting and the environment. Sustaining Wetlands 
Issues Paper, No. 1992-3, North American Wetlands Conservation Council, Ottawa, 
Ontario, Canada 
 
Klassen, W., Lankreijer, H. J. M. and Veen, A. W. L. (1996) Rainfall interception near a 
forest edge. Journal of Hydrology: 185, 349-361 
 
Lafleur, P. M. and Roulet, N. T. (1992) A comparison of evaporation rates from two fens 
of the Hudson Bay Lowland. Aquatic Botany: 44, 55-69 
 
Lafleur, P. M., Hember, R. A., Admiral, S. W. and Roulet, N. T. (2005) Annual and 
seasonal variability in evapotranspiration and water table at a shrub-covered bog in 
southern Ontario, Canada. Hydrological Processes: 19, 3533-3550 
 
Lance, J. M. (2008) Ericaceae root surface area distribution by depth profile, Cacouna, 
QC. B.E.S. Theis, Department of Geography, University of Waterloo, Ontario, Canada. 
 
Lauenroth, W. K. and Bradford, J. B. (2006) Ecohydrology and the Partitioning AET 
Between Transpiration and Evaporation in a Semiarid Steppe. Ecosystems: 9, 756-767 
 
Lavoie, C., Marcoux, K., Saint-Louis, A. and Price, J. S. (2005) The Dynamics of a 
Cotton-grass (Eriophorum vaginatum L.) cover expansion in a Vacuum-Mine Peatland, 
Southern, Québec, Canada. Wetlands: 25, 64-75 
 
Liu, C., Zhang, X., and Zhang, Y. (2002) Determination of daily evaporation and 
evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and 
micro-lysimeter. Agricultural and Forest Meteorology: 11, 109-120 
 
Llorens, P., Poch, R., Latron, J. and Gallart, F. (1997) Rainfall interception by a Pinus 
sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. 
Monitoring design and results down to the event scale. Journal of Hydrology: 199, 331-
345 
 
MacKinney, A. L. (1929) Effects of Forest Litter on Soil Temperature and Soil Freezing 
in Autumn and Winter. Ecology: 10, 312-321. 

 82



 
Marin, C. T., Bouten, W. and Sevink, J. (2000) Gross rainfall and its partitioning into 
throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in 
western Amazonia. Journal of Hydrology: 237, 40-57 
 
Martinez-Meza, E. and Whitford, W. G. (1996) Stemflow, throughfall and channelization 
of stemflow by roots in three Chihuahuan desert shrubs. Journal of Arid Environments: 
32, 271-287  
 
McNeil, P. and Waddington, J. M. (2003) Moisture controls on Sphagnum growth and 
CO2 exchange on a cutover bog. Journal of Applied Ecology:  40, 354–367 
 
Miranda, A. C., Jarvis, P. G. and Grace, J. (1984) Transpiration and Evaporation from 
Heather Moorland. Boundary Layer Meteorology: 28, 227-243 
 
Moore, T. M., Bubier, J. L., Frolking, S. E., LaFleur, P. M. and Roulet, N. T. (2002) 
Plant biomass and production and CO2 exchange in an ombrotrophic bog. Journal of 
Ecology: 90, 25-36 
 
Moore, T. M., Roulet, N. T. and Waddington, J. M. (1998) Uncertainty in predicting the 
effect of climatic change on the Carbon cycling of Canadian peatlands. Climatic Change: 
40, 229-245 
 
Murphy, S.R. and Lodge G.M. (2001) Plant density, litter and bare soil effects on actual 
evaporation and transpiration in autumn. The Australian Society of 
Agronomy: Proceedings 10th Australian Agronomy Conference, Hobart, 2001 
 
Naot, O. and Mahrer, Y. (1991) Two-Dimensional Microclimate Distribution Within and 
Above A Crop Canopy in an Arid Environment: Modeling and Observational Studies. 
Boundary-Layer Meteorology: 56, 223-244 
 
Návar, J. and Bryan, R. (1990) Interception loss and rainfall redistribution by three semi-
arid growing shrubs in Northeastern Mexico. Journal of Hydrology: 115, 51-63 
 
Päivänen, J. (1966) The distribution of rainfall in different types of forest stands (In 
Finnish with English summary). Silva Fennica: 119 (3) 
 
Plamondon, A.P., Prévost, M., Naud, R.C. (1984). Interception de la pluie dans la 
sapinière à bouleau blanc, Forêt Montmorency. Canadian Journal of Forest Research : 
14, 722–730 
 
Poulin, M., Rochefort, L., Quinty, F. and Lavoie, C. (2005) Spontaneous revegetation of 
mined peatlands in eastern Canada. Canadian Journal of Botany: 83, 539-557 
 
Price, J. S. (1991) Evaporation from a blanket bog in a foggy coastal environment. 
Boundary-Layer Meteorology: 57, 391-406 

 83

http://www.regional.org.au/au/asa/2001/index.htm


 
Price, J. S. (1996) Hydrology and microclimate of a partly restored cutover bog, Québec. 
Hydrological Processes: 10, 1263- 1272 
 
Price, J. S. (1997) Soil moisture, water tension, and water table relationships in a 
managed cutover bog. Journal of Hydrology: 202, 21-32 
 
Price, J. S. (2003) The role and character of seasonal peat deformation on the hydrology 
of undisturbed and cutover peatlands. Water Resources Research: 39, 9, 1241 
doi:10.1029/2002WR001302 
 
Price, J. S., Heathwaite, A. L. and Baird, A. J. (2003) Hydrological processes in 
abandoned and restored peatlands: An overview of management approaches. Wetlands 
Ecology and Management: 11, 65–83 
 
Price, J. S. and Maloney, D. A. (1994) Hydrology of a Patterned Bog-Fen Complex in 
Southeastern Labrador, Canada. Nordic Hydrology: 25, 313-330 
 
Price, J., Rochefort, L. and Quinty, F. (1998) Energy and moisture considerations on 
cutover peatlands: surface microtopography, mulch cover and Sphagnum regeneration. 
Ecological Engineering: 10, 293-312 
 
Price, J.S. and Whitehead, G.S. (2001) Developing hydrological thresholds for Sphagnum 
recolonization on an abandoned cutover bog. Wetlands: 21, 32-40 
 
Price, J.S. and Whitehead, G.S. (2004) The influence of past and present hydrological 
conditions on Sphagnum recolonization and succession in a block-cut bog, Québec. 
Hydrological Processes: 18, 315-328 
 
Price, J. S., Whittington, P. N., Elrick, D. E., Strack, M., Brunet, N. and Faux, E. (2008) 
A Method to Determine Unsaturated Hydraulic Conductivity in Living and 
Undecomposed Sphagnum Moss. Soil Science Society of America Journal: 72, 487-491 
 
Priestly, C.H.B. and Taylor, R.J. (1972) On the assessment of surface heat flux and 
evaporation using large-scale parameters. Monthly Weather Review: 100, 81-92 
 
Putuhena, W.H. and Cordery, I. (1996) Estimation of interception capacity of the forest 
floor. Journal of Hydrology: 180, 283-290 
 
Quinty, F. and Rochefort, L. (1997) Plant Reintroduction on a Harvested Peat Bog. In: 
Trettin, C.C., Jurgensen, M.F., Grigal, D.F., Gale, M.R., Jeglum, J.K. (Eds.), Northern 
Forested Wetlands: Ecology and Management. CRC Press, Boca Raton, FL, pp. 133–145 
 
Richards, J. H. and Caldwell, M. M. (1987) Hydraulic lift: Substantial nocturnal water 
transport between soil layers by Artemisia tridentata roots. Oecologia: 73, 486-489 
 

 84



Rochefort, L. (2000) Sphagnum – A Keystone Genus in Habitat Restoration. The 
Bryologist: 103, 503-508 
 
Rochefort, L., Quinty, F. and Campeau, S. (1997) Restoration of peatland vegetation: The 
case of damaged or completely removed acrotelm. International Peat Journal: 7, 20-28 
 
Rochefort, L., Quinty, F. Campeau, S., Johnson, K. and Malterer, T. (2003) North 
American approach to the restoration of Sphagnum dominated peatlands. Wetlands 
Ecology and Management: 11, 3-20 
 
Romanov, V. V. (1968) Hydrophysics of bogs. N. Kanor (Translator), A. Heiman 
(Editor) Israel Program for Scientific Translations, Jerusalem 
 
Sato, Y., Kumagai, T., Kume, A., Otsuki, K. and Ogawa, S. (2004) Experimental analysis 
of moisture dynamics of litter layers—the effects of rainfall conditions and leaf shapes. 
Hydrological Processes: 18, 3007–3018 
 
Schlotzhauer, S. M. and Price, J. S. (1999) Soil water flow dynamics in a managed 
cutover peat field, Québec: Field and laboratory investigations. Water Resources 
Research: 35, 3675-3683 
 
Schothorst, C.J. 1977. Subsidence of low moor peat soil in the western Netherlands. 
Geoderma 17: 265–291. 
 
Schouwenaars, J. M. (1993) Hydrological differences between bogs and bog-relicts and 
consequences for bog restoration. Hydrobiologia: 265, 217-224 
 
Shangning, J. and Unger, P. W. (2001) Soil Water Accumulation under Different 
Precipitation, Potential Evaporation, and Straw Mulch Conditions. Soil Science Society of 
America Journal: 65, 442-448 
 
Sharp, R. E. and Davies, W. J. (1985) Root Growth and Water Uptake by Maize Plants in 
Drying Soil. Journal of Experimental Botany: 36, 1441-1456 
 
Sun, G., Riekerk, H. and Kornhak, L. V. (2000) Ground-Water-Table Rise After Forest 
Harvesting On Cypress-Pine Flatwoods In Florida. Wetlands: 20, 101-112 
 
Sundberg, S. and Rydin, H. (2002) Habitat requirements for establishment of Sphagnum 
from spores. Journal of Ecology: 90, 268-278 
 
Takagi, K. and Tsuboya, T. (1999) Effect of the invasion of vascular plants on heat and 
water balance in the Sarobetsu mire, northern Japan. Wetlands: 19, 246-254 
 
Tarnocai, C., Kettles, I. M. and Lacelle, B. (2005) Peatlands of Canada. Agriculture and 
Agri-Food Canada, Research Branch, Ottawa, Ontario. 
 

 85



Tobón-Marin, C., Bouten, I. W. and Dekker, S. (2000) Forest floor water dynamics and 
root water uptake in four forest ecosystems in northwestern Amazonia. Journaly of 
Hydrology: 237, 169-183 
 
Topp, G. C., Watt, M. and Hayhoe, H. N. (1996) Point specific measurement and 
monitoring of soil water content with an emphasis on TDR. Canadian Journal of Soil 
Science: 76, 307-316 
 
van Breeman, N. (1995) How Sphagnum bogs down other plants. Trends in Ecology and 
Evolution: 10, 270-275 
 
Van Seters, T (1999) Linking the Past to the Present: The Hydrological Impacts of Peat 
Harvesting and Natural Regeneration on an Abandoned Cut-over Bog, Quebec M.E.S 
Thesis. University of Waterloo 
 
Van Seters, T. E. and Price, J. S. (2001) The impact of peat harvesting and natural 
regeneration on the water balance of an abandoned cutover bog, Quebec. Hydrological 
Processes: 15, 233-248 
 
Van Seters, T. and Price, J. S. (2002) Towards a conceptual model of hydrological 
change on an abandoned cutover bog, Quebec. Hydrological. Processes.: 16, 1965–1981 
 
Vetterlein, D. and Marschner, H. (1993) Use of a microtensiometer technique to study 
hydraulic lift in a sandy soil planted with pearl millet (Pennisetum americanum [L.] 
Leeke). Plant and Soil: 149, 275-282 
 
Wan, C., Sosebee, R. E. and McMichael, B. L. (1993) Does hydraulic lift exist in 
shallow-rooted species? A quantitative examination with a half-shrub Gutierrezia 
sarothrae. Plant and Soi: 153, 11-17 
 
Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D. and Wullschleger, S. D. 
(2001) A comparison of methods for determining forest evapotranspiration and its 
components: sap-flow, soil water budget, eddy covariance and catchment water balance. 
Agricultural and Forest Meteorology: 106, 153-168 
 
Whitehead, G. (1999) The Hydrological Processes Influencing the Natural 
Recolonisation of Sphagnum in a Cutover Bog after 25 Years of Abandonment, Québec. 
M.E.S. Thesis. Department of Geography, University of Waterloo, Ontario, Canada 
 
Yazaki, T., Shin-ichi, U. and Yabe, K. (2006) Water balance and water movement in 
unsaturated zones of Sphagnum hummocks in Fuhrengawa Mire, Hokkaido, Japan. 
Journal of Hydrology: 319, 312-327 
 
Yepez, E. A., Scott, R. L., Cable, W. L. and Williams, D. G. (2007) Intraseasonal 
Variation in Water and Carbon Dioxide Flux Components in a Semiarid Riparian 
Woodland. Ecosystems: 10, 1100-1115 

 86



Appendices 
 
Appendix A1. Percent cover of Shrubs and mosses along baulks and trenches at the 
Cacouna peatland 
 
Plant Percent cover (%) 

Baulk 1 Baulk 2 Trench 1 Trench 2 
Kalmia 
angustifolia 

43 45 27 24 

Chamaedaphne 
calyculata 

10 17 16 6 

Ledum 
groenlandicum 

13 4 6 3 

Other shrubs 15 21 16 12 
Total shrubs 81 87 65 45 
Sphagnum 0 0 0 59 
Other moss 10 2 0 1 
 
 
 
Appendix A2. Average height of ericaceous shrubs along baulks and trenches at the 
Cacouna peatland 
 
Location Average height (cm) Maximum height 

(cm) 
Minimum height 
(cm) 

Baulk 1 47 83 23 
Baulk 2 45 87 19 
Trench 1 35 96 4 
Trench 2 24 69 7 
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Appendix A3. Relative humidity (%) and Temperature (°C) at 50 and 10 cm above 
the peat surface, on the litter surface and within the litter layer 
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Appendix B. Soil water pressure (ψ) at a. 2.5, b. 5, c. 10, d. 20 and e. 30 cm below the 
surface for shrub covered and bare peat at different water table depths over the 
experimental period 
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Appendix C. Volumetric water content at a. 2.5, b. 5, c. 10 and d. 20 cm below the 
peat surface for shrub covered and bare peat at different water table depths 
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